Галактика - Definition. Was ist Галактика
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Галактика - definition

ГРАВИТАЦИОННО-СВЯЗАННАЯ СИСТЕМА ИЗ ЗВЁЗД И ЗВЁЗДНЫХ СКОПЛЕНИЙ, МЕЖЗВЁЗДНОГО ГАЗА И ПЫЛИ, И ТЁМНОЙ МАТЕРИИ
Галактика (вид астрономических объектов); Галактики; Ядро галактики; Ядра галактик; Внегалактическая туманность; Структура галактики
  • Антенны]] — пара взаимодействующих галактик
  • Кривая вращения дисковой галактики. A — без учёта скрытой массы, B — наблюдаемая
  • [[MACS J0025.4-1222]], распределения газа и тёмной материи
  • Бар (перемычка) проходит от внутренних концов спиральных ветвей (голубые) к центру галактики. [[NGC 1300]].
  • Объект M31, галактика Андромеда. Рисунок Мессье
  • M82]], галактика с активным звездообразованием
  • M87]]. Из центра галактики вырывается [[релятивистская струя]] (джет).
  • Лебедя]]
  • килопарсеков]], расположенная на расстоянии около 20{{nbsp}}мегапарсеков от Земли
  • M31]], 1899 г.
  • 750пкс
  • [[Секстет Сейферта]] как пример группы галактик
  • Схема спиральной галактики, вид в профиль

Галактика         
(позднегреч. Galaktikos - молочный, млечный, от греческого gala - молоко)

обширная звёздная система, к которой принадлежит Солнце, а следовательно, и вся наша планетная система вместе с Землёй. Г. состоит из множества звёзд различных типов, а также звёздных скоплений и ассоциаций, газовых и пылевых туманностей и отдельных атомов и частиц, рассеянных в межзвёздном пространстве. Большая часть их занимает объём линзообразной формы поперечником около 30 и толщиной около 4 килоПарсек (соответственно около 100 тыс. и 12 тыс. световых лет). Меньшая часть заполняет почти сферический объём с радиусом около 15 килоПарсек (около 50 тыс. световых лет). Все компоненты Г. связаны в единую динамическую систему, вращающуюся вокруг малой оси симметрии. Земному наблюдателю, находящемуся внутри Г., она представляется в виде Млечного Пути (отсюда и её название - "Г.") и всего множества отдельных звёзд, видимых на небе. В связи с этим Г. называется также системой Млечного Пути. В отличие от всех др. галактик (См. Галактики), ту, к которой принадлежит Солнце, иногда называют "нашей Галактикой" (термин пишут всегда с прописной буквы).

Звёзды и межзвёздная газопылевая материя заполняют объём Г. неравномерно: наиболее сосредоточены они около плоскости, перпендикулярной оси вращения Г. и являющейся плоскостью её симметрии (т. н. галактической плоскостью). Вблизи линии пересечения этой плоскости с небесной сферой (галактического экватора (См. Галактический экватор)) и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, т. к. Солнечная система находится недалеко от этой плоскости. Млечный Путь представляет собой скопление огромного количества звёзд, сливающихся в широкую белёсую полосу; однако звёзды, проектирующиеся на небе рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и сотни км/сек) в разных направлениях. Наименьшая плотность распределения звёзд в пространстве (пространственная плотность) наблюдается в направлении полюсов Г. (её северный полюс находится в созвездии Волос Вероники). Общее количество звёзд в Г. оценивается в 100 млрд.

Межзвёздное вещество рассеяно в пространстве также неравномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул (См. Глобулы), отдельных облаков и туманностей (от 5 до 20-30 Парсек в поперечнике), их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам тёмные туманности представляются невооруженному глазу в виде тёмных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звёзд в них является результатом поглощения света этими несветящимися пылевыми облаками. Многие межзвёздные облака освещены близкими к ним звёздами большой светимости и представляются в виде светлых туманностей, т. к. светятся либо отражённым светом (если состоят из космических пылинок), либо в результате возбуждения атомов и последующего испускания ими энергии (если туманности газовые).

Полная масса Г., включая все звёзды и межзвёздное вещество, оценивается в 1011 масс Солнца, т. е. около 1044 г. Как показывают результаты детальных исследований, строение Г. схоже со строением большой галактики в созвездии Андромеды, галактики в созвездии Волос Вероники и др. Однако, находясь внутри Г., мы не можем видеть всю её структуру в целом, что затрудняет её изучение.

Впервые звёздную природу Млечного Пути обнаружил Г. Галилей в 1610, но последовательное изучение строения Г. началось лишь в конце 18 в., когда В. Гершель, применив свой "метод черпков", подсчитал числа звёзд, видимых в его телескоп в различных направлениях. На основании результатов этих наблюдений он высказал предположение, что наблюдаемые звёзды образуют гигантскую систему сплюснутой формы. В. Я. Струве обнаружил (1847), что число звёзд в единице объёма увеличивается с приближением к галактической плоскости, что межзвёздное пространство не идеально прозрачно, а Солнце не расположено в центре Г. В 1859 М. А. Ковальский указал на вероятное осевое вращение всей системы Г. Первые более или менее обоснованные оценки размеров Г. выполнили немецким астроном X. Зелигер и голландским астроном Я. Каптейн в 1-й четверти 20 в. Зелигер, допуская неравномерное распределение звёзд в пространстве и различную их светимость, заключил, что поверхности одинаковой звёздной плотности являются эллипсоидами вращения со сжатием 1:5. Однако из-за неучёта искажающего влияния межзвёздного поглощения света звёзд многие из первых выводов были ошибочными; в частности, оказались преувеличенными размеры Г. При определениях положения Солнца (Земли) в Г. большинство исследователей относило его к центру Г., главной причиной чего было также игнорирование влияния поглощения света. Такой взгляд поддерживался также и живучестью геоцентрического и антропоцентрического миропредставления. В 20-х гг. 20 в. американский астроном Х. Шепли окончательно доказал нецентральное положение Солнца в Г., определив при этом направление на центр Г. (в созвездии Стрельца).

В середине 20-х гг. 20 в. Г. Стрёмберг (США), изучая закономерности движения Солнца относительно различных групп звёзд, обнаружил т. н. асимметрию звёздных движений, которая дала фактический материал для обоснования многих выводов о сложности строения Г. Швед. астроном Б. Линдблад (20-е гг. 20 в.), изучая динамику и строение Г. на основе анализа скоростей звёзд, обнаружил сложность строения Г. и принципиальное различие пространственных скоростей звёзд, населяющих разные части Г., хотя все они и связаны в единую систему, симметричную относительно галактической плоскости. Голландским астроном Я. Оорт в 1927 на основе статистического изучения лучевых скоростей и собственных движений звёзд доказал существование вращения Г. вокруг собственной малой оси. При этом оказалось, что внутренние, более близкие к центру, части Г. вращаются быстрее, чем внешние. На расстоянии Солнца от центра Г. (10 килопарсек) эта скорость около 250 км/сек; период полного оборота - около 180 млн. лет.

Доказательство межзвёздного поглощения света звёзд (1930, сов. астроном Б. А. Воронцов-Вельяминов, американский астроном Р. Трамплер), его количественные оценки и учёт позволили уточнить расстояния до отдельных галактических объектов и размеры Г., положили начало выявлению деталей её структуры. Многочисленные исследования пространственного распределения звёзд различных типов (советский астроном П. П. Паренаго и др.), собственных движений звёзд (ранние работы С. К. Костинского на Пулковской обсерватории, американского астронома В. Боса и др.), движения Солнца в пространстве, а также и движений звёздных потоков (советским астроном В. Г. Фесенков, голландским астроном А. Блау и др.), изучение галактического гравитационного поля и др. позволили открыть, с одной стороны, много общих закономерностей, а с другой - большое разнообразие в кинематических, физических и структурных характеристиках отдельных составляющих Г.

В 30-е и последующие годы 20 в. значительных успехов в области исследований Г. достигли советские астрономические обсерватории, Важные результаты получены: в области динамики звёздных систем; в наблюдениях и составлении многочисленных каталогов параметров звёзд и др. галактических объектов; в развитии новых взглядов на природу межзвёздной среды; в разработке новых теорий и методов, позволивших выполнить количественные оценки параметров, характеризующих поглощение в галактическом пространстве; в выяснении связей между звёздами и межзвёздным веществом. В избранных областях Млечного Пути проведены по плану Г. А. Шайна (СССР) и по комплексному плану П. П. Паренаго фотометрия и спектральная классификация десятков тысяч звёзд. Огромное значение для понимания процессов развития Г. имело открытие звёздных ассоциаций (См. Звёздные ассоциации). Большую роль в изучении Г. сыграли успехи советской науки о переменных звёздах. Сопоставление их физических особенностей и морфологических характеристик с возрастными и пространственными параметрами позволило решить ряд задач структуры и природы Г. Исследования советских и американских астрономов сделали очевидным сложное строение Г. Оказалось, что различным частям Г. соответствуют различные, вполне определенные элементы их состава. В 1948 советские исследователи в результате наблюдений в инфракрасных лучах впервые получили изображение ядра Г. Наблюдения 50-х гг. 20 в. показали наличие у нашей Г. спиральных рукавов. Изучение Г., её строения и развития - предмет, в первую очередь, трёх разделов астрономии: звёздной астрономии, астрометрии и астрофизики. Все эти разделы сыграли большую роль в уточнении и детализации наших представлений о Г. Большое значение для исследования Г. имело развитие радиоастрономии, получившей много новых сведений о Г. Радиоастрономические наблюдения позволили обнаружить большое количество источников излучения в радиодиапазоне в межзвёздных пространствах Г., массы нейтрального водорода, изучить их движения, выяснить общие черты внутреннего строения Г.

К началу 70-х гг. 20 в. в результате исследований, выполненных в СССР и за рубежом, сложилось следующее представление о Г. Степень общей сплюснутости Г., т. е. отношение толщины Г. к её экваториальному диаметру, составляет примерно 1:10, хотя резко очерченных границ Г. не имеет, Толщина расположенного вдоль плоскости галактического экватора слоя, внутри которого находится большинство звёзд и основной массы межзвёздного вещества, равна 400-500 парсек. Пространственная плотность звёзд в нём такова, что одна звезда приходится на объём, равный кубу с ребром в 2 парсека. В окрестностях Солнца плотность несколько меньше. Она значительно возрастает по мере приближения к центру Г., который при наблюдении с Земли виден в созвездии Стрельца. Следовательно, распределение звёзд характеризуется концентрацией как к плоскости Г., так и к её центру. Общая масса межзвёздного газа в Г. составляет около 0,05 массы всех звёзд, и его средня плотность близ плоскости экватора не превосходит 10-25 или 10-24 г/см3. Межзвёздная пыль, состоящая из твёрдых частичек, радиусы которых порядка 10-4-10-5 см, в своей массе примерно в 100 раз меньше массы газа. Не влияя из-за ничтожной массы на динамику Г., пыль тем не менее заметно влияет на видимую структуру Г., рассеивая свет звёзд, проходящий через её среду. Ядро Г., будучи погружено в относительно плотные массы межзвёздного вещества, мало доступно оптическим наблюдениям, но радиоастрономические наблюдения указывают на активность ядра, присутствие в нём больших масс вещества и источников энергии.

Г. имеет резко выраженное подсистемное строение; различают три подсистемы: плоскую, промежуточную и сферическую. Плоская подсистема характеризуется наличием молодых горячих звёзд, переменных звёзд типа долгопериодических цефеид, звёздных ассоциаций, рассеянных звёздных скоплений и газо-пылевого вещества. Все они сосредоточены у галактической плоскости в форме экваториального диска (толщиной 1/20 поперечника Г.). Средний возраст звёздного населения диска около 3 млрд. лет. Слабее концентрируются к плоскости Г. жёлтые и красные звёзды-карлики и звёзды-гиганты, занимающие объём в виде сильно сплюснутого эллипсоида. Все субкарлики, жёлтые и красные гиганты, переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек, т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра Г. и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной (См. Галактическая корона). Из центральной области Г. распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, Г. сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения Г. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.

Вопросы эволюции Г. в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов Г. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего "разбегания" в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советским астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.

Проблема происхождения и развития звёзд в Г. является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в Г. и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара -звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.

Предполагается, что Г. в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее "поколение" звёзд, образовавшее диск Г., оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий. Развиваемое рядом советских астрономов представление о роли в эволюции галактик мощных взрывных отталкивательных сил, таящихся в недрах галактик, может пролить новый свет на проблему развития Г.

См. илл.

Лит.: Паренаго П. П., Курс звёздной астрономии, 3 изд., М., 1954; Бок Б. Дж. и Бок П. Ф., Млечный путь, пер. с англ., М., 1959; Курс астрофизики и звездной астрономии, т. 2, М., 1962; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966.

Е. К. Харадзе.

Галактика в созвездии Волос Вероники.

Галактика в созвездии Андромеды.

Часть Млечного Пути в созвездиях Орла и Лебедя. Видны тёмные и светлые участки ("туманности" и "облака").

Галактика         
ж.
Звездная система, к которой принадлежит Солнце; система Млечного Пути.
ГАЛАКТИКА         
гигантская звездная система.
Наша г. (та, к к-рой принадлежит Солнце). Другие галактики.

Wikipedia

Галактика

Гала́ктика (др.-греч. γᾰλαξίας «Млечный Путь» от др.-греч. γάλα, γάλακτος «молоко») — гравитационно связанная система из звёзд, звёздных скоплений, межзвёздного газа и пыли, тёмной материи, планет. Все объекты в составе галактики участвуют в движении относительно общего центра масс.

Все галактики (за исключением нашей) — чрезвычайно далёкие астрономические объекты. Расстояние до ближайших из них измеряют в мегапарсеках, а до далёких — в единицах красного смещения z . Самой удалённой из известных по состоянию на 2022 год является галактика CEERS-93316. Разглядеть на небе невооружённым глазом можно всего лишь четыре галактики: галактика Андромеды (видна в северном полушарии), Большое и Малое Магеллановы Облака (видны в южном; являются спутниками нашей Галактики) и галактика М33 в созвездии Треугольника (из северного полушария, на незасвеченном небе).

Общее количество галактик в наблюдаемой части Вселенной пока точно не известно. В 1990-х годах, основываясь на наблюдениях космического телескопа «Хаббл», считали, что всего существует порядка 100 миллиардов галактик. В 2016 году эту оценку пересмотрели и увеличили число галактик до двух триллионов. В 2021 году по новым данным, полученным космическим аппаратом New Horizons, оценка числа галактик была вновь уменьшена, и теперь составляет всего несколько сотен миллиардов.

В пространстве галактики распределены неравномерно: в одной области можно обнаружить целую группу близких галактик, а можно не обнаружить ни одной (так называемые войды).

Получить изображение галактик до отдельных звёзд не удавалось вплоть до начала XX века. К началу 1990-х годов насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в Местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число разрешённых галактик резко возросло.

Галактики отличаются большим разнообразием: среди них можно выделить сфероподобные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), линзовидные, карликовые, неправильные и т. д.. Если же говорить о числовых значениях, то, к примеру, их масса варьируется от 0,5 ⋅106 масс Солнца у карликовых галактик (таких как Segue 2) до 2,5⋅1015 масс Солнца у сверхгигантских галактик (таких как IC 1101), для сравнения — масса нашей галактики Млечный Путь равна 2⋅1011 масс Солнца.

Диаметр галактик — от 5 до 250 килопарсеков (16—800 тысяч световых лет), для сравнения — диаметр нашей галактики составляет около 30 килопарсеков (100 тысяч световых лет). Самая большая известная (на 2021 год) галактика IC 1101 имеет диаметр более 600 килопарсеков.

Одной из нерешённых проблем строения галактик является тёмная материя, проявляющая себя только в гравитационном взаимодействии. Она может составлять до 90 % от общей массы галактики, а может и полностью отсутствовать, как в некоторых карликовых галактиках.

Beispiele aus Textkorpus für Галактика
1. Пышный конкурс красоты "Мисс Галактика" сорван террористами!
2. Галактика Хронос очень могущественна, но миролюбива.
3. Наша галактика является системой с двумя звездами.
4. Перед бесконечно живущими людьми открыта бесконечная галактика.
5. Кстати, наша галактика вибрирует, словно барабанная перепонка.