Диэлектрические измерения - Definition. Was ist Диэлектрические измерения
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Диэлектрические измерения - definition

Градусные измерения

Диэлектрические измерения      

измерения величин, характеризующих свойства диэлектриков (См. Диэлектрики) в постоянном и переменном электрических полях. К Д. и. относятся измерения диэлектрической проницаемости ε в постоянных и переменных полях, диэлектрических потерь, удельной электропроводности в постоянном электрическом поле, электрической прочности.

В случае твёрдых диэлектриков Д. и. часто сводятся к измерению ёмкости С плоского электрического конденсатора, между пластинами которого помещён исследуемый диэлектрик. По формуле

(d - толщина диэлектрического образца, S - площадь его боковой грани, k - коэффициент пропорциональности) находят диэлектрическую проницаемость ε. В случае жидкостей и газов измеряют ёмкость системы электродов в вакууме (С0) и в данном веществе (Сε), а затем определяют ε из соотношения: ε = Сε/С0.

Методы измерения ёмкости и диэлектрических потерь различны для разных частот электрического поля. В постоянном поле и при низких частотах (десятые доли гц) ёмкость, как правило, определяют путём измерений зарядного или разрядного токов конденсатора с помощью баллистического гальванометра (рис. 1).

В области частот от десятых гц до 107 гц, помимо С, существенно измерение диэлектрических потерь (См. Диэлектрические потери), мерой которых является тангенс угла диэлектрических потерь tg δ. С и tg δ измеряют с помощью мостовых схем, в частности мостов Шеринга.

В высокочастотной области (от 105 до 108 гц) для измерения ёмкости Сε и диэлектрической проницаемости ε применяют главным образом резонансные методы (рис. 2). Колебательный контур, содержащий образцовый конденсатор (см. Емкости меры (См. Ёмкости меры)), настраивается в резонанс, и определяется соответствующая резонансу величина ёмкости С'. Затем параллельно образцовому конденсатору присоединяют конденсатор с диэлектриком Сε, и контур снова настраивается в резонанс. Во втором случае ёмкость С" образцового конденсатора будет меньше. Ёмкость конденсатора, заполненного диэлектриком Cε, определяется по формуле:

Cε = C' - С". (1)

Различные резонансные методы отличаются друг от друга по способу определения tg δ. В методе замещения диэлектрик заменяется эквивалентной схемой, состоящей из ёмкости и сопротивления. Подбирается такое сопротивление R, которое, будучи включено последовательно или параллельно образцовому конденсатору С, ёмкость которого берётся равной ёмкости диэлектрика Сε, даёт такой же резонансный ток в контуре, как и образец диэлектрика. Метод расстройки контура основан на том, что ширина резонансной кривой контура определяется его добротностью Q, связанной с тангенсом угла потерь диэлектрика соотношением:

tg δ = 1/Q. (2)

Ёмкость и диэлектрические потери определяют также методом куметра. В данной области частот можно применять также метод биений (См. Биения).

В области сверхвысоких частот (от 108 до 1011 гц) Д. и. основаны на использовании объёмных резонаторов (См. Объёмный резонатор) и Радиоволноводов, а также на закономерностях распространения электромагнитных волн в свободном пространстве. В случае газообразных диэлектриков измеряют резонансную частоту ω0 и добротность Q0 объёмного резонатора (рис. 3), когда в нём создан вакуум, и те же величины ωε и Qε, когда он целиком заполнен диэлектриком. При этом имеют место соотношения:

В случае жидких и твёрдых диэлектриков, если они целиком заполняют резонатор, получаются гораздо большие изменения резонансной частоты и добротности. Кроме того, если диэлектрические потери велики, то добротность резонатора становится весьма малой величиной. Это нарушает справедливость формул (3) и (4). Поэтому применяют частичное заполнение резонатора диэлектриком, чаще всего имеющим форму диска или стержня.

Другой метод Д. и. в области СВЧ состоит в том, что в радиоволноводе устанавливаются бегущая или стоячая электромагнитные волны. Для волновода, заполненного диэлектриком, длина волны λε равна:

где λ0 - длина волны в свободном пространстве, λкр - критическая (предельная) длина волны, зависящая от типа волн и размеров поперечного сечения волновода. Из формулы (5) можно определять ε. При введении диэлектрика в волновод изменяются условия распространения волн и происходит поглощение энергии электромагнитного поля. Это позволяет определить tg δ.

Существуют два основных метода измерения ε и tg δ с помощью волновода. Первый основан на наблюдении картины стоячих волн в волноводе, нагружённом известным сопротивлением. Второй - на наблюдении поглощения волн, проходящих через диэлектрик. В случае газов, которые имеют ε ≈ 1 и малые диэлектрические потери, ε и tg δ определяют с помощью установки, схематически изображённой на рис. 3. В среднем участке волновода, отгороженном слюдяными окнами, создаётся вакуум, а затем туда вводится газ. При этом в согласии с формулой (5) длина волны уменьшается и положение минимумов стоячей волны смещается. Д. и. жидкостей и твёрдых тел, имеющих ε ≠ 1, осложняются отражением волн на границе воздух - диэлектрик. В этих условиях наблюдают картину стоячих волн на входе заполненного диэлектриком волновода с помощью измерительной линии (См. Измерительная линия). В области миллиметровых, инфракрасных и световых волн измеряют коэффициент отражения или преломления и коэффициент поглощения диэлектрика, откуда находят ε и tg δ.

Методы измерения удельной электропроводности диэлектриков σ в постоянном поле существенно не отличаются от аналогичных методов для металлов и полупроводников (См. Полупроводники). Для точных измерений очень малых σ используют Постоянного тока усилитель.

Измерения электрической прочности Епр основаны на измерении напряжения Vnp, которое соответствует наступлению диэлектрического пробоя:

Епр = Vпр/d, (6)

где d - расстояние между электродами.

Лит.: Сканави Г. И., Диэлектрическая поляризация и потери в стеклах и керамических материалах с высокой диэлектрической проницаемостью, М. - Л., 1952; Карандеев К. Б., Мостовые методы измерений, К., 1953; Хиппель А. Р., Диэлектрики и их применение, пер. с англ., М. - Л., 1959; Браун В., Диэлектрики, пер. с англ., М., 1961; Измерения на сверхвысоких частотах, пер. с англ., под ред. В. Б. Штейншлейгера, М., 1952.

А. Н. Губкин.

Рис. 1. Измерения диэлектрической проницаемости при помощи баллистического гальванометра G.

Рис. 2. Измерения ёмкости Сε и диэлектрической проницаемости ε резонансным методом. Катушка индуктивности L и образцовый конденсатор С образуют замкнутый контур, слабо связанный с генератором переменного тока.

Рис. 3. Волноводные установки для измерения ε и tgδ газов.

Мино (единица измерения)         
Мино ( ) — старофранцузская единица измерения объёма, равная 3 французским бушелям (boisseaux) или 34 кубическим дециметрам.
МЕРЫ ДЛИНЫ         
МЕРА, С ЧЕМ СРАВНИВАЮТ ДЛИНЫ
Единица длины; Меры длины; Единица измерения расстояния; Единицы измерения длины; Акена; Единица измерения длины; Мера длины
служат для воспроизведения длин данного размера; подразделяются на штриховые, концевые и штрихо-концевые. Размеры штриховых мер длины (стержни, ленты, проволоки и т. п.) определяются расстоянием между нанесенными на них штрихами, концевых - расстоянием между измерительными поверхностями, ограничивающими меры, штрихо-концевых - обоими методами.

Wikipedia

История градусных измерений

История градусных измерений — история измерений длины одного градуса дуги меридиана в разных местах на земной поверхности, имевших своей целью определить фигуру Земли.

Первое градусное измерение было произведено в Египте александрийским математиком Эратосфеном (276—194 до н. э.). Он определил дугу меридиана между Александриею и Сиеною. Линейное расстояние было вычислено по сведениям о времени перехода между названными городами торговых караванов и определено в 5000 стадий, а угловое — по наблюдениям высот солнца; во времена летних солнцестояний в Сиене солнце поднималось до зенита, и его отражение было видно в глубоких колодцах; в то же время в Александрии солнце не достигало до зенита на 7°12′. Из этих данных не трудно было вывести, что одному градусу на поверхности земли соответствует 5000:7,2 стадий, а 360 градусам, или целой окружности, — 250000 стадий. Зная окружность, по правилам геометрии легко уже вычислить и радиус земли. О точности этого первого и по мысли совершенно правильного градусного измерения нельзя составить ныне определённого понятия, так как неизвестна длина египетской стадии; различные ученые определяют стадию от 158 до 185 метров.

Подобная же попытка повторена была вскоре Посидонием, измерившим дугу меридиана между островом Родосом и Александрией. Линейная длина вычислена из продолжительности плавания судов, а угловая — по высотам звезды Канопус. Это градусное измерение вследствие ошибочности судового счисления должно быть ещё менее точно, чем измерение Эратосфена.

Новое градусное измерение произведено только в IX веке арабскими учеными Халиб-бен-Абдул-Меликом и Али-бен-Иза по поручению халифа Альмамуна в Месопотамии; но числовые данные этого измерения, к сожалению, утрачены.

В последующие за тем Средние века не только не производилось других градусных измерений, но забыта была сама мысль о шарообразности Земли, и следующая попытка сделана была уже в 1525 г. французским врачом Фернелем. Он измерил дугу меридиана между Парижем и Амьеном по счету оборотов колеса своего экипажа, а высоты солнца на конечных точках деревянным треугольником с диоптрами. Главные ошибки всех этих градусных измерений проистекали от неверного измерения линейной длины выбранных дуг; непосредственным измерением нельзя точно получить большое расстояние, особенно на неровной местности.

Эпоху в развитии градусных измерений составляет работа голландского математика Снеллиуса в 1616—17 гг. Он заменил непосредственное измерение длинной дуги на земной поверхности триангуляцией, состоящей в проложении ряда смежных треугольников, в которых измеряют только все углы и длину какой-нибудь одной стороны. Такую сторону, называемую базисом, сравнительно небольшой длины, всегда можно выбрать на ровной, удобной для измерения местности. Измерение же углов — работа несравненно более простая. Зная одну сторону и все углы, нетрудно по правилам тригонометрии вычислить все прочие стороны, а затем и расстояния между конечными пунктами триангуляции. Снеллиус проложил 32 треугольника между Алкмаром и Бергеном в окрестностях Лейдена и получил для длины одного градуса величину 28500 голландских рут, или 55100 туазов, что, как впоследствии оказалось, было слишком мало. Ошибочность вывода произошла главным образом от несовершенства измерительных снарядов: длину базиса он измерил простою железною линейкою, а углы — медным квадрантом с диоптрами, позволявшими отсчитывать только минуты дуги. Однако основания нового способа были совершенно верны, и с тех пор все последующие градусные измерения состояли именно в проложении системы треугольников, в которых измерялась одна или две (для поверки) небольшие стороны.

Первым подражателем Снеллиуса был французский математик и астроном Пикар. Он проложил в 1669—70 годах триангуляцию между Амьеном и Мальвуазеном и получил для длины одного градуса меридиана величину 57060 туазов, что весьма близко к истине. На этой триангуляции впервые были применены усовершенствованные угломерные снаряды со зрительными трубами, снабженными сетками нитей в окулярах. Градусное измерение Пикара в историческом отношении замечательно тем, что оно послужило И.Ньютону основанием в его работах, приведших к открытию законов всемирного тяготения.

Когда вопрос о фигуре и размерах Земли был, наконец, решен с известною степенью точности, явились теоретические изыскания Ньютона и Гюйгенса, показывающие, что вращающаяся и некогда, вероятно, жидкая земля не может быть правильным шаром, а должна была принять фигуру эллипсоида вращения, сжатого у полюсов. Они вычислили даже величину так называемого сжатия, под которым понимают отношение разности экваториальной и полярной полуосей к экваториальной полуоси. Для подтверждения этого теоретического вывода необходимо было произвести новые градусные измерения. Если Земля — это эллипсоид вращения, то кривизна дуги каждого меридиана у полюсов должна быть меньше, чем у экватора, и потому длины дуг в один градус должны постепенно возрастать от экватора к полюсам.

Чтобы решить этот вопрос по возможности в скорейшее время, Французская академия решила продолжить градусное измерение Пикара на север до Дюнкирхена и на юг до Коллиура. Работа эта, в которой приняли участие Лагир и Кассини (отец Доминик и сын Жак), была окончена в 1718 г. и привела к обратному заключению: на севере Франции средняя длина одного градуса получилась меньше, чем на юге (56960 и 57097 туазов). Впоследствии оказалось, что заключение было ошибочно вследствие неточности наблюдений. Сжатие земли весьма незначительно, и поэтому разность в длинах дуг по одному градусу на небольшом протяжении Франции была поглощена ошибками наблюдений. Однако Кассини не хотел подрывать доверия к своим результатам и доказывал, что уменьшение длины градусов от юга к северу показывает, что Земля представляет не сжатый у полюсов, а вытянутый по оси эллипсоид вращения. К его мнению присоединились некоторые другие ученые, старавшиеся даже показать теоретические основания такой фигуры.

С этого времени возгорелся известный спор между французскими и английскими учеными. Первые опирались на действительные наблюдения, вторые — на непогрешимость великого Ньютона и на уменьшение силы тяжести по мере приближения к экватору, что обнаружилось отставанием часов, перевезенных из Парижа в Кайенну.

Почин к окончательному решению этого спора взяла опять Французская академия и в 1735 и 1736 годах снарядила две большие экспедиции в столь отдаленные по широтам места, что разность в длинах градусов, если она существует, должна бы обнаружиться несомненно. К этому времени изобретены были новые приборы как для измерения базисов, так и для измерения углов; по своей точности они превосходили приборы, употреблявшиеся в предыдущих работах. Для сравнения линейных мер сделаны два совершенно равных образца туаза. Одна экспедиция в составе выдающихся ученых Бугера, Лякондамина, Годена и Уллоа отправилась в Перу, другая же, из молодых ученых — Мопертюи, Клеро, Лемонье, Камюза и Утие, — в Лапландию; к последней присоединился ещё шведский ученый Цельсий. После возвращения этих экспедиций, претерпевших во время путешествий и работ немало лишений и опасностей, в Париж и окончания вычислений сжатие земли у полюсов обнаружилось несомненно. Длина градуса под экватором оказалась 56734, а у полярного круга 57437 туазов. Эти результаты дают сжатие около 1/114, что превосходит даже теоретический вывод Ньютона. Впоследствии обнаружилось, что в северной дуге вкрались какие-то ошибки и она в 1801—1803 гг. была переизмерена шведскими учеными; для длины градуса у полярного круга получилась величина 57196 туазов, что все же значительно больше длины градуса под экватором; число для сжатия уменьшилось до 1/323.

Хотя экспедициями Французской академии вопрос о сплюснутости земли у полюсов и был решен окончательно, но числовые выводы не были ещё достаточно точны, и новые попытки градусных измерений продолжались. Из них в середине XVIII в. лучшими были градусные измерения Лакайля на мысе Доброй Надежды, Босковича в Италии и Мейсона и Диксона в Пенсильвании.

Новое обширное градусное измерение предпринято было опять французами для определения длины новопроектированной меры — метра, который по декрету 26 марта 1791 г. должен был быть равным одной десятимиллионой доле четверти парижского меридиана. При этом измерении старая дуга Кассини была совершенно переделана и продолжена на юг через Испанию до острова Форментеры. Полевые работы производились в самый разгар революции и следовавших за тем войн, так что учёным Деламбру, Мешеню, Био и Араго пришлось бороться с затруднениями, с которыми не встречались ученые прежних экспедиций. Араго, на долю которого выпало измерение углов в Испании, едва избавился от плена и даже смерти. Подробности этого градусного измерения и выводов основанных на нём величин метра и килограмма изложены в трехтомном сочинении Деламбра «Base du système métrique décimal» (П., 1806—10).

Разногласия между результатами градусных измерений XVIII века дали повод предполагать, что Земля не может быть представлена правильным эллипсоидом вращения и что разные меридианы имеют различную кривизну. Эти соображения в связи с развитием триангуляций для картографических работ побуждали производить новые измерения в разных частях земной поверхности. Наиболее обширные произведены были в Индии и России.

Российское градусное измерение по меридиану началось в Прибалтийском крае небольшою дугою, измеренною бывшим в то время в Дерпте профессором астрономии и геодезии В. Струве. Впоследствии, когда Струве сделан был директором основанной в 1839 г. Пулковской обсерватории, он получил возможность продолжить прибалтийское измерение на север и на юг. Таким образом российское градусное измерение с его продолжением через Швецию и Норвегию обняло огромную дугу в 25°20′ по широте и представляет непрерывную цепь из 258 треугольников. На протяжении этой триангуляции измерено 10 базисов и имеется 13 астрономических пунктов, так что это измерение само по себе представляет как бы 12 отдельных дуг. Подробности этого измерения изложены в двухтомном сочинении В. Струве «Дуга меридиана между Дунаем и Ледовитым морем» (СПб., 1861).

По мере накопления результатов градусных измерений они подвергались тщательной обработке, и различные учёные выводили из существующих измерений фигуру и размеры Земли. Так как результаты измерений дуг в одном месте земной поверхности не совсем согласны с результатами в другом и так как разногласия превосходят пределы возможных ошибок в измерениях, то сделалось уже очевидным, что земля не может быть представлена фигурою правильного эллипсоида вращения. Поэтому из совокупности имеющегося в распоряжении материала выводили такой эллипсоид, который наиболее близко представлял бы истинную фигуру Земли (геоид); уклонения же истинной фигуры от этого эллипсоида подвергаются специальным исследованиям и называются местными уклонениями отвесной линии.