Клаузиуса - Моссотти формула - Definition. Was ist Клаузиуса - Моссотти формула
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Клаузиуса - Моссотти формула - definition

Клаузиуса — Моссотти формула; Уравнение Клазиуса — Мосотти

Клаузиуса - Моссотти формула      
(уравнение, закон)

выражает зависимость статической диэлектрической проницаемости (См. Диэлектрическая проницаемость) ε неполярного диэлектрика (См. Диэлектрики) от поляризуемости α его молекул, атомов или ионов и от их числа N в 1 см3 (если диэлектрик состоит из частиц одного сорта):

(1)

Часто К. записывают в виде

(2)

где М - молекулярная масса вещества, ρ - его плотность, NA - Авогадро число. Правую часть (2) иногда называют молекулярной поляризацией. Установлена в 1879 немецким физиком Р. Клаузиусом, развившим идеи итальянского учёного О. Ф. Моссотти.

К. - М. ф. строго выполняется для неполярных газов при низких (<200-500 мм рт. ст., или 26,6-66,5 кн/м2) и средних (от 500 мм рт. cm. до 5 атм, или 66,5- 500 кн/м2) давлениях; приближённо - для неполярных газов при повышенных (выше 5-10 атм, или 0,5-1 Мн/м2) давлениях, для неполярных жидкостей и для многих неполярных кристаллов.

Для видимого света (высокочастотное электрическое поле) диэлектрическая проницаемость равна квадрату показателя преломления: ε = n2. В таких полях связь между ε и электронной поляризуемостью выражается Лоренц - Лоренца формулой (См. Лоренц - Лоренца формула).

Лит. см. при ст. Диэлектрики.

Уравнение Клапейрона — Клаузиуса         
  • 220px
ТЕРМОДИНАМИЧЕСКОЕ УРАВНЕНИЕ ФАЗОВОГО ПЕРЕХОДА
Клаузиуса-Клапейрона уравнение; Клапейрона-клаузиуса уравнение; Клапейрона — Клаузиуса уравнение; Уравнение Клаузиуса — Клапейрона; Клапейрона - Клаузиуса уравнение
Уравнение Клапейрона — Клаузиуса — термодинамическое уравнение, относящееся к квазистатическим (равновесным) процессам перехода вещества из одной фазы в другую (испарение, плавление, сублимация, полиморфное превращение и др.).
КЛАПЕЙРОНА - КЛАУЗИУСА УРАВНЕНИЕ         
  • 220px
ТЕРМОДИНАМИЧЕСКОЕ УРАВНЕНИЕ ФАЗОВОГО ПЕРЕХОДА
Клаузиуса-Клапейрона уравнение; Клапейрона-клаузиуса уравнение; Клапейрона — Клаузиуса уравнение; Уравнение Клаузиуса — Клапейрона; Клапейрона - Клаузиуса уравнение
зависимость между давлением p и температурой T однокомпонентной системы, состоящей из двух равновесно сосуществующих фаз (напр., жидкости и пара); определяет кривую фазового перехода первого рода (парообразования, плавления и др.). Клапейрона - Клаузиуса уравнение предложено Б. П. Э. Клапейроном (1834) и усовершенствовано Р. Ю. Э. Клаузиусом (1850).

Wikipedia

Формула Клаузиуса — Моссотти

Фо́рмула Кла́узиуса — Моссо́тти описывает связь статической диэлектрической проницаемости диэлектрика с поляризуемостью составляющих его частиц. Получена независимо друг от друга в 1850 г. Оттавиано Ф. Моссотти и в 1879 г. Рудольфом Ю. Э. Клаузиусом. В случаях, когда вещество состоит из частиц одного сорта, в Гауссовой системе единиц формула имеет вид:

ε 1 ε + 2 = 4 π 3 N α , {\displaystyle {\frac {\varepsilon -1}{\varepsilon +2}}={\frac {4\pi }{3}}N\alpha ,}

где ε {\displaystyle \varepsilon }  — диэлектрическая проницаемость, N {\displaystyle N}  — количество частиц в единице объёма, а α {\displaystyle \alpha }  — их поляризуемость.

Уточним, что под поляризуемостью частицы здесь понимается коэффициент α {\displaystyle \alpha } , связывающий напряжённость постоянного электрического поля E {\displaystyle {\vec {E}}} , действующего на частицу, с дипольным моментом p {\displaystyle {\vec {p}}} , образующимся у частицы под действием этого поля:

p = α E . {\displaystyle {\vec {p}}=\alpha {\vec {E}}.}

Поскольку предполагается, что поле во времени не изменяется, то его действие способно вызывать смещения частиц как с малой массой — электронов, так и с большой — ионов и атомов. Соответственно, в данном случае поляризуемость включает в себя электронную, ионную и атомную поляризуемости.

Формулу записывают также в виде:

ε 1 ε + 2 M ρ = 4 π 3 N A α , {\displaystyle {\frac {\varepsilon -1}{\varepsilon +2}}\cdot {\frac {M}{\rho }}={\frac {4\pi }{3}}N_{\mathrm {A} }\alpha ,}

где M {\displaystyle M}  — молекулярная масса вещества, ρ {\displaystyle \rho }  — его плотность, а N A {\displaystyle N_{\mathrm {A} }}  — постоянная Авогадро.

Если вещество состоит из частиц нескольких сортов с поляризуемостями α i {\displaystyle \alpha _{i}} и объёмными концентрациями N i {\displaystyle N_{i}} , то формула принимает вид:

ε 1 ε + 2 = 4 π 3 [ N 1 α 1 + N 2 α 2 + + N n α n ] . {\displaystyle {\frac {\varepsilon -1}{\varepsilon +2}}={\frac {4\pi }{3}}\left[N_{1}\alpha _{1}+N_{2}\alpha _{2}+\cdots +N_{n}\alpha _{n}\right].}

Формула применима только по отношению к неполярным диэлектрикам, то есть к таким, частицы которых собственным дипольным моментом не обладают. Для применимости формулы необходимо также, чтобы диэлектрик был изотропным.