Лейбница формула - Definition. Was ist Лейбница формула
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Лейбница формула - definition

ЗНАКОЧЕРЕДУЮЩИЙСЯ ЧИСЛОВОЙ РЯД
Формула Лейбница для pi

Лейбница формула      

формула, выражающая производную n-го порядка (см. Дифференциальное исчисление) от произведения двух функций через производные сомножителей:

.

Эта формула была сообщена Г. Лейбницем в письме к И. Бернулли в 1695. Л. ф. облегчает вычисление производных высших порядков.

Формула Лейбница (производной произведения)         
Формула Лейбница для дифференцирования произведения
Формула Лейбница для n-ой производной произведения двух функций — обобщение правила дифференцирования произведения (и отношения) двух функций на случай n-кратного дифференцирования.
Ряд Лейбница         
Ряд Лейбница — знакочередующийся ряд, названный именем исследовавшего его немецкого математика Лейбница (хотя этот ряд был известен и раньше):

Wikipedia

Ряд Лейбница

Ряд Лейбница — знакочередующийся ряд, названный именем исследовавшего его немецкого математика Лейбница (хотя этот ряд был известен и раньше):

1 1 3 + 1 5 1 7 + 1 9 1 11 + 1 13 1 15 + 1 17 1 19 + 1 21 = n = 0 ( 1 ) n 2 n + 1 . {\displaystyle 1-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-{\frac {1}{11}}+{\frac {1}{13}}-{\frac {1}{15}}+{\frac {1}{17}}-{\frac {1}{19}}+{\frac {1}{21}}-\cdots =\sum _{n=0}^{\infty }\,{\frac {(-1)^{n}}{2n+1}}.}

Сходимость этого ряда сразу следует из теоремы Лейбница для знакочередующихся рядов. Лейбниц показал, что сумма ряда равна π 4 . {\displaystyle {\frac {\pi }{4}}.} Это открытие впервые показало, что число π {\displaystyle \pi } , первоначально определённое в геометрии, на деле является универсальной математической константой; в дальнейшем этот факт постоянно находил новые подтверждения.