Логические операции - Definition. Was ist Логические операции
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Логические операции - definition

В ЛОГИКЕ ДЕЙСТВИЕ, ВСЛЕДСТВИЕ КОТОРОГО ПОРОЖДАЮТСЯ НОВЫЕ ПОНЯТИЯ, С ИСПОЛЬЗОВАНИЕМ УЖЕ СУЩЕСТВУЮЩИХ
Логические операции; Логические связки; Пропозициональная связка

Логические операции         

логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов (См. Логика предикатов), содержащие переменные (См. Переменная) и обращающиеся в высказывания при замене последних какими-либо конкретными их значениями) в высказывания или пропозициональные формы. Л. о. можно разделить на две основные группы: Кванторы и пропозициональные (сентенциональные) связки. Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка т. н. "количественные" ("кванторные") слова: "все", "любой", "некоторый", "существует", "единственный", "не более (менее) чем", количественные числительные и т. п. Характерной особенностью кванторов является - в случае нефиктивного их применения - понижение числа свободных переменных в преобразуемом выражении: применение квантора к выражению, содержащему n свободных переменных, приводит, вообще говоря, к выражению, содержащему n - 1 свободную переменную, в частности, пропозициональную форму с одной свободной переменной применение квантора (по этой переменной) преобразует в высказывание.

Пропозициональные связки (в отличие от кванторов, введение которых знаменует переход к логике предикатов) употребляются уже в самой элементарной части логики - в логике высказываний (См. Логика высказываний). В формализованных логических и логико-математических языках они выполняют функции, вполне аналогичные функциям союзов и союзных слов, употребляемых для образования сложных предложений в естественных языках. Так, отрицание ⌉ истолковывается как частица "не", конъюнкция & истолковывается как союз "и", дизъюнкция ﹀ - как (неразделительное) "или", импликация ⊃ - как оборот "если..., то...", эквиваленция Логические операции - как оборот "тогда и только тогда, когда" и т. п. При этом, однако, соответствие между Л. о. и средствами естественного языка отнюдь не взаимно однозначно. Во-первых, потому, что высказывания, по определению, могут принимать лишь два "истинностных значения": "истину" ("и") и "ложь" ("л"), так что пропозициональные Л. о. можно рассматривать как различные функции, отображающие некоторую область из двух элементов в себя; поэтому число различных n-местных (т. е. от n аргументов) Л. о. определяется из чисто комбинаторных соображений - оно равно 2n. Во-вторых, в формализованных языках математической логики игнорируются любые смысловые (и тем более стилистические) оттенки значений союзов, кроме тех, что непосредственно определяют истинностное значение получающегося сложного предложения. В свою очередь, в качестве Л. о. рассматриваются подчас и такие связки, содержательные аналоги которых в обычном языке, как правило, не имеют специальных наименований; таков, например, "штрих Шеффера" ∣ в нижеследующей таблице, где приведён полный перечень всех двуместных пропозициональных Л. о. (в первых двух столбцах помещены истинностные значения некоторых "исходных" высказываний р и q, в остальных - значения высказываний, образуемых из них посредством указанных сверху Л. о.).

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| | Тождественная | Тождественная | P | Отррицание | q | Отрицание | Конъюнкция | Антиконъюнкция | Дизъюнкция | Антидизъюнкция | Эквиваленция | Антиэквиваленция | Импликация | Антиимпликация | Обратная | Обратная |

| | истина | ложь | | p | | q | | (штрих | | | | | | | импликация | антиимпликация |

| | | | | | | | | Шеффера) | | | | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| p | q | и | л | p | p | q | q | p&q | P)q | p∨q | pq | pЛогические операцииq | pq | p⊃q | pq | p⊂q | p⊄q |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| и | и | и | л | и | л | и | л | и | л | и | л | и | л | и | л | и | л |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| и | л | и | л | и | л | л | и | л | и | и | л | л | и | л | и | и | л |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| л | и | и | л | л | и | и | л | л | и | и | л | л | и | и | л | л | и |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| л | л | и | л | л | и | л | и | л | и | л | и | и | л | и | л | и | л |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Поскольку в таблице сведены все мыслимые двуместные Л. о., соответствующие всевозможным "четырехбуквенным словам" из "и" и "л", записанным по вертикали в её столбцах, то естественно, что среди этих 17 Л. о. есть и "вырожденные" случаи: первые две "связки" вообще не зависят ни от каких "аргументов" - это константы "и" и "л" (понятно, что таких "нульместных" связок имеется ровно ), далее идут "одноместных связок" (каждая из которых зависит лишь от одного из аргументов р или q) и только затем уже 16-2-4 = 10 собственно двуместных Л. о. Можно далее рассматривать трёхместных Л. о. и т. д.; оказывается, однако, что уже небольшой части приведённых Л. о. достаточно для того, чтобы посредством их суперпозиций (т. е. последовательного применения) выразить любые n-местные Л. о. для любого натурального n. Такими функционально полными наборами связок являются, например, ⌉ и &, ⌉ и ﹀, ⌉ и ⊃ и даже одна-единственная связка ∣. Поскольку логика высказываний может быть изоморфно (см. Изоморфизм) интерпретирована в терминах логики классов (См. Логика классов), для каждой Л. о. имеется аналогичная теоретико-множественная операция; совокупность таких операций над множествами (классами) образует т. н. алгебру множеств. См. Алгебра логики.

Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, §§ 05, 06 и 15.

Ю. А. Гастев.

Логическая операция         

в ЦВМ, поразрядная операция над кодами произвольной длины по правилам алгебры логики. Л. о. производится над всеми цифрами кодов одна и та же, при этом каждая цифра результата зависит не более чем от одной цифры одного или нескольких кодов. В ЦВМ Л. о. выполняются в большинстве случаев над двоичными кодами. К числу основных и наиболее распространённых Л. о. относятся операции отрицания, конъюнкции, дизъюнкции и эквивалентности (см. табл. при ст. Алгебра логики). Эти Л. о. достаточно просто реализуются физическими элементами ЦВМ, а более сложные Л. о. могут быть программно сведены, например, только к трём Л. о.: отрицания, конъюнкции и дизъюнкции. Примеры использования Л. о.: отрицание - инвертирование при преобразовании прямого кода в обратный или дополнительный код; конъюнкция - логическое умножение для "выделения" любых частей кода; дизъюнкция - логическое сложение при формировании новых команд из нескольких других команд; эквивалентность - равнозначность при определении поразрядного тождества кодов. К Л. о. часто относят также сдвиг, проверку равенства числа нулю, проверку знака числа, получение абсолютной величины числа и др. В универсальных ЦВМ Л. о. обеспечивают управление ходом выполнения программ и взаимосвязь в программах, формирование новых команд, перекодирование данных, поиск информации по логическим шкалам и др. Л. о. являются основой для создания специализированных логических цифровых машин, для решения задач анализа переключательных схем с целью их минимизации и задач синтеза, т. е. составления и подбора элементарных схем, посредством которых можно создавать более сложные схемы для реализаций заданных функций.

А. В. Гусев.

ЛОГИЧЕСКАЯ ОПЕРАЦИЯ         
операция над числами (обычно в двоичной системе счисления), выполняемая по правилам алгебры логики. Основные и наиболее распространенные логические операции, реализуемые в ЭВМ, - дизъюнкция, конъюнкция, отрицание; при составлении программ для ЭВМ более сложные логические операции обычно сводят к трем основным.

Wikipedia

Логическая операция

В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.

Beispiele aus Textkorpus für Логические операции
1. Левое же, осуществляющее логические операции, - отключается.
2. Причина - физические ограничения, связанные с размерами электронных элементов, осуществляющих логические операции.
3. Оно придаст вашим мыслительным процессам энергичность, ускорит логические операции, не даст мозгу "тормозить". Существуют и факторы, снижающие интеллектуальную активность.
4. Это устройство имело (тогда еще теоретически) управляющий блок, вычислитель (объединяющий арифметические и логические операции, то есть процессор) и память.
5. Числа ассоциируются у меня со словами, со зрительными образами, но важно даже не это, а то, что я просто вижу ответ". "Очевидно, его мозг работает совершенно особым образом, основные логические операции перенесены в подсознание, а на-гора выдается уже готовый результат", предполагают психологи." Надо сказать, что в своем таланте Лемэр не одинок.