Масс-спектрометры - Definition. Was ist Масс-спектрометры
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Масс-спектрометры - definition

Дмитрий Масс; Масс Дмитрий; Масс, Дмитрий; Дмитрий Вадимович Масс; Димитрий Масс; Масс Дмитрий Вадимович; Димитрий Вадимович Масс; Масс, Димитрий Вадимович

Масс-спектрометры      

приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В М.-с. регистрация ионов осуществляется электрическими методами, в масс-спектрографах - по потемнению чувствительного слоя фотопластинки, помещаемой в прибор.

М.-с. (рис. 1) обычно содержит устройство для подготовки исследуемого вещества 1; ионный источник 2, где это вещество частично ионизуется и происходит формирование ионного пучка; масс-анализатор 3, в котором происходит разделение ионов по массам, точнее, обычно по величине отношения массы m иона к его заряду e; приёмник ионов 4, где ионный ток преобразуется в электрический сигнал, который затем усиливается и регистрируется. В регистрирующее устройство 6, помимо информации о количестве ионов (ионный ток), из анализатора поступает также информация о массе ионов. М.-с. содержит также системы электрического питания и устройства, создающие и поддерживающие высокий Вакуум в ионном источнике и анализаторе. Иногда М.-с. соединяют с ЭВМ.

При любом способе регистрации ионов масс-спектр в конечном счёте представляет собой зависимость величины ионного тока I от m. Например, в масс-спектре свинца (рис. 2) каждый из пиков ионного тока соответствует однозарядным ионам изотопов свинца. Высота каждого пика пропорциональна содержанию данного изотопа в свинце. Отношение массы иона к ширине δm пика (в единицах массы) называется разрешающей силой или разрешающей способностью М.-с. Поскольку ширина пика на разных уровнях относит. интенсивности ионного тока различна, величина R на разных уровнях также различна. Так, например, в спектре рис. 2 в области пика изотопа 208Pb на уровне 10 \% относительно вершины пика R = 250, а на уровне 50 \% (полувысота) R = 380. Для полной характеристики разрешающей способности прибора необходимо знать форму ионного пика, которая зависит от мн. факторов. Иногда разрешающей способностью наз. значение той наибольшей массы, при которой два пика, отличающиеся по массе на 1, разрешаются до заданного уровня. Т. к. для мн. типов М.-с. R не зависит от отношения м/е, то оба приведённых определения R совпадают. Принято говорить, что М.-с. с R до 102 имеет низкую разрешающую силу, с R Масс-спектрометры 102 - 103 - среднюю, с RМасс-спектрометры 103 - 104 - высокую, с R > 104 - 105 - очень высокую.

Общепринятого определения чувствительности М.-с. не существует. Если исследуемое вещество вводится в ионный источник в виде газа, то чувствительностью М.-с. часто называют отношение тока, создаваемого ионами данной массы заданного вещества, к парциальному давлению этого вещества в ионном источнике. Эта величина в приборах разных типов и с разными разрешающими способностями лежит в диапазоне от 10-6 до 10-3 а/мм рт. ст. Относительной чувствительностью называется минимальное содержание вещества, которое ещё может быть обнаружено с помощью М.-с. в смеси веществ. Для разных приборов, смесей и веществ она лежит в диапазоне от 10-3 до 10-7 \%. За абсолютную чувствительность иногда принимают минимальное количество вещества в r, которое необходимо ввести в М.-с. для обнаружения этого вещества.

Масс-анализаторы. В основе классификации М.-с. лежит принцип устройства масс-анализатора. Различают статические и динамические М.-с. В статических масс-анализаторах для разделения ионов используются электрические и магнитные поля, постоянные или практически не изменяющиеся за время пролёта иона через прибор. Разделение ионов является в этом случае пространственным: ионы с разными значениями m/е движутся в анализаторе по разным траекториям. В масс-спектрографах пучки ионов с разными величинами m/е фокусируются в разных местах фотопластинки, образуя после проявления следы в виде полосок (выходное отверстие ионного источника обычно делается в форме прямоугольной щели). В статических М.-с. пучок ионов с заданным m/е фокусируется на щель приёмника ионов. Масс-спектр образуется (развёртывается) при изменении магнитного или электрического поля, в результате чего в приёмную щель последовательно попадают пучки ионов с разными величинами m/е. При непрерывной записи ионного тока получается график с ионными пиками (рис. 2). Для получения в такой форме масс-спектра, зарегистрированного масс-спектрографом на фотопластинке, используются Микрофотометры.

На рис. 3 приведена схема распространённого статического масс-анализатора с однородным магнитным полем. Ионы, образованные в ионном источнике, выходят из щели шириной S1 в виде расходящегося пучка, который в магнитном поле разделяется на пучки ионов с разными

,

причём пучок ионов с массой mb фокусируется на щель S1 приёмника ионов. Величина mb/e определяется выражением:

, (1)

где mb - масса иона (в атомных единицах массы (См. Атомные единицы массы)), е - заряд иона (в ед. элементарного электрического заряда (См. Элементарный электрический заряд)), r - радиус центральной траектории ионов (в см), Н - напряжённость магнитного поля (в э), V - приложенная разность потенциалов (в в), с помощью которой ускорены ионы в ионном источнике (ускоряющий потенциал).

Развёртка масс-спектра производится изменением Н или V. Первое предпочтительнее, т. к. в этом случае по ходу развёртки не изменяются условия "вытягивания" ионов из ионного источника. Разрешающая способность такого М.-с.:

(2)

где σ1 - ширина пучка в месте, где он попадает в щель приёмника S2.

Если бы фокусировка ионов была идеальной, то в случае масс-анализатора, у которого X1 = X2 (рис. 3), σ1 было бы в точности равно ширине щели источника S1. В действительности σ1>S1, что уменьшает разрешающую способность М.-с. Одной из причин уширения пучка является разброс в кинетической энергии у ионов, вылетающих из ионного источника. Это в большей или меньшей степени неизбежно для любого ионного источника (см. ниже). Другими причинами являются: наличие у данного пучка значительной расходимости, рассеяние ионов в анализаторе из-за столкновения с молекулами остаточного газа, "расталкивание" ионов в пучке из-за одноимённости их зарядов. Для ослабления влияния этих факторов применяют "наклонное вхождение" пучка в анализатор и криволинейные границы магнитного поля. В некоторых М.-с. применяют неоднородные магнитные поля, а также т. н. призменную оптику (см. Электронная и ионная оптика). Для уменьшения рассеяния ионов стремятся к созданию в анализаторе высокого вакуума (≤10-8 мм рт. cm. в приборах со средней и высокой величиной R). Для ослабления влияния разброса по энергиям применяют М.-с. с двойной фокусировкой, которые фокусируют на щель S2 ионы с одинаковыми m/е, вылетающие не только по разным направлениям, но и с разными энергиями. Для этого ионный пучок пропускают не только через магнитное, но и через отклоняющее электрическое поле специальные формы (рис. 4).

Сделать S1 и S2 меньше на несколько мкм технически трудно. Кроме того, это привело бы к очень малым ионным токам. Поэтому в приборах для получения высокой и очень высокой разрешающей способности приходится использовать большие величины r и соответственно длинные ионные траектории (до нескольких м).

В динамических масс-анализаторах для разделения ионов с разными m/е используют, как правило, разные времена пролёта ионами определённого расстояния. Существуют динамические анализаторы, в которых используется сочетание электрического и магнитного полей, и чисто электрические анализаторы. Для динамических масс-анализаторов общим является воздействие на ионные пучки импульсных или радиочастотных электрических полей с периодом, меньшим или равным времени пролёта ионов через анализатор. Предложено более 10 типов динамических масс-анализаторов, в том числе время-пролётный (1), радиочастотный (2), квадрупольный (3), фарвитрон (4), омегатрон (5), магнито-резонансный (6), циклотронно-резонансный (7). Первые четыре анализатора являются чисто электрическими, в последних трёх используется сочетание постоянного магнитного и радиочастотного электрических полей.

Во время-пролётном М.-с. (рис. 5) ионы образуются в ионном источнике очень коротким электрическим импульсом и "впрыскиваются" в виде "ионного пакета" через сетку 1 в анализатор 2, представляющий собой эквипотенциальное пространство. "Дрейфуя" вдоль анализатора по направлению к коллектору ионов 3, исходный пакет "расслаивается" на ряд пакетов, каждый из которых состоит из ионов с одинаковыми m/е. Расслоение обусловлено тем, что в исходном пакете энергия всех ионов одинакова, а их скорости и, следовательно, времена пролёта t анализатора обратно пропорциональны :

, (3)

Здесь V - ускоряющий потенциал, L - длина анализатора. Последовательность ионных пакетов, приходящих на коллектор, образует масс-спектр, который регистрируется, например на экране осциллографа.

В радиочастотном М.-с. (рис. 6) ионы приобретают в ионном источнике одинаковую энергию eV и проходят через систему последовательно расположенных сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки 1, 2, 3, расположенные на равном расстоянии друг от друга. К средней сетке относительно двух крайних приложено высокочастотное электрическое ω поле Uвч. При фиксированных частоте этого поля и энергии ионов eV только ионы с определённым m/е имеют такую скорость υ, что, двигаясь между сетками 1 и 2 в полупериоде, когда поле между ними является ускоряющим для ионов, они пересекают сетку 2 в момент смены знака поля и проходят между сетками 2 и 3 также в ускоряющем поле. Т. о., они получают макс. прирост энергии и попадают на коллектор. Ионы других масс, проходя эти каскады, либо тормозятся полем, т. е. теряют энергию, либо получают недостаточный прирост энергии и отбрасываются в конце пути от коллектора высоким тормозящим потенциалом U3. В результате на коллектор попадают только ионы с определённым m/е. Масса таких ионов определяется соотношением:

(4)

где а - численный коэффициент, S - расстояние между сетками. Перестройка анализатора на регистрацию ионов других масс осуществляется изменением либо начальной энергии ионов, либо частоты высокочастотного поля.

В квадрупольном М.-с. (рис. 7) разделение ионов осуществляется в поперечном электрическом поле с гиперболическим распределением потенциала. Поле создаётся квадрупольным конденсатором (квадруполем), состоящим из четырёх стержней круглого или квадратного поперечного сечения, расположенных симметрично относительно центр, оси и параллельно ей. Противолежащие стержни соединены попарно, и между парами приложены постоянная и переменная высокочастотные разности потенциалов. Пучок ионов вводится в анализатор вдоль оси квадруполя через отверстие 1. При фиксированных значениях частоты ω и амплитуды переменного напряжения U0 только у ионов с определённым значением m/е амплитуда колебаний в направлении, поперечном оси анализатора, не превышает расстояния между стержнями. Такие ионы за счёт начальной скорости проходят через анализатор и, выходя из него через выходное отверстие 2, регистрируются, попадая на коллектор ионов. Сквозь квадруполь проходят ионы, масса которых удовлетворяет условию:

, (5)

где а - постоянная прибора. Амплитуда колебаний ионов др. масс нарастает по мере их движения в анализаторе так, что эти ионы достигают стержней и нейтрализуются. Перестройка на регистрацию ионов других масс осуществляется изменением амплитуды Uo или частоты ω переменной составляющей напряжения.

В фарвитроне (рис. 8) ионы образуются непосредственно в самом анализаторе при ионизации молекул электронами, летящими с катода, и совершают колебания вдоль оси прибора между электродами 1 и 2. При совпадении частоты этих колебаний ω с частотой переменного напряжения Uвч, подаваемого на сетку, ионы приобретают дополнит. энергию, преодолевают потенциальный барьер и приходят на коллектор. Условие резонанса имеет вид:

(6)

где а - постоянная прибора.

В динамических М.-с. с поперечным магнитным полем разделение ионов по массам основано на совпадении циклотронной частоты (См. Циклотронная частота) вращения иона по круговым траекториям в поперечном магнитном поле с частотой переменного напряжения, приложенного к электродам анализатора. Так, в омегатроне (рис. 9) под действием приложенных высокочастотного электрического поля Е и постоянного магнитного поля Н ионы движутся по дугам окружности. Ионы, циклотронная частота которых совпадает с частотой ω поля Е, движутся по спирали и достигают коллектора. Масса этих ионов удовлетворяет соотношению:

(7)

где а - постоянная прибора.

В магнито-резонансном М.-с. (рис. 10) используется постоянство времени пролёта ионами данной массы круговой траектории. Из ионного источника 1 близкие по массе ионы (область траекторий которых I заштрихована), двигаясь в однородном магнитном поле Н, попадают в модулятор 3, где формируется тонкий пакет ионов, которые за счёт полученного в модуляторе ускорения начинают двигаться по орбите II. Дальнейшее разделение по массам осуществляется путём ускорения "резонансных" ионов, циклотронная частота которых кратна частоте поля модулятора. Такие ионы после нескольких оборотов вновь ускоряются модулятором и попадают на коллектор ионов 2.

В циклотронно-резонансном М.-с. (рис. 11) происходит резонансное поглощение ионами электромагнитной энергии при совпадении циклотронной частоты ионов с частотой переменного электрического поля в анализаторе; ионы движутся по циклоидам в однородном магнитном поле Н с циклотронной частотой орбитального движения:

(8)

(с - скорость света).

Разрешающая способность для каждого типа динамических масс-анализаторов определяется сложной совокупностью факторов, часть из которых, например влияние объёмного заряда и рассеяния ионов в анализаторе, являются общими для всех типов М.-с., как динамических, так и статических. Для приборов (1) важную роль играет отношение времени, за которое ионы пролетают расстояние, равное ширине ионного пакета к общему времени пролёта ионами пространства дрейфа; для приборов (3) - число колебаний ионов в анализаторе и соотношение постоянной и переменной составляющих электрических полей; для приборов (5) - число оборотов, которые совершает ион в анализаторе, прежде чем попадает на коллектор ионов и т. д. Для некоторых типов динамических М.-с. достигнута высокая разрешающая способность: для (1) и (3) R Масс-спектрометры 103, для (6) R Масс-спектрометры 2,5․104, для (7) R Масс-спектрометры 2․103.

Для М.-с. с очень высокой разрешающей способностью, а также для лабораторных приборов широкого назначения, от которых требуются одновременно высокая разрешающая способность, высокая чувствительность, широкий диапазон измеряемых масс и воспроизводимость результатов измерений, наилучшие результаты достигаются с помощью статических М.-с. С другой стороны, в отдельных случаях наиболее удобны динамические М.-с. Например, время-пролётные М. удобны для регистрации процессов длительностью от 10-2 до 10-5 сек; радиочастотные М.-с. благодаря малым величинам веса, габаритов и потребляемой мощности перспективны в космических исследованиях; квадрупольные М.-с. благодаря малым размерам анализатора, большому диапазону измеряемых масс и высокой чувствительности применяются при работе с молекулярными пучками (см. Молекулярные и атомные пучки). Магнито-резонансные М.-с. вследствие высоких значений R на низких уровнях интенсивности используются в геохимии изотопов гелия для измерения очень больших изотопных отношений.

Ионные источники. М.-с. классифицируются также по способам ионизации, в качестве которых используются: 1) ионизация электронным ударом; 2) фотоионизация; 3) ионизация в сильном электрическом поле (полевая Ионная эмиссия); 4) ионизация ионным ударом (ионно-ионная эмиссия); 5) Поверхностная ионизация; электрическая искра в вакууме (вакуумная искра); 6) ионизация под действием лазерного луча (см. Лазерное излучение).

В аналитической масс-спектроскопии (См. Масс-спектроскопия) наиболее часто применяются благодаря относительной технической простоте и достаточно большим создаваемым ионным токам способы: 1 - при анализе испаряемых веществ; 6 - при работе с трудноиспаряемыми веществами и 5 - при изотопном анализе веществ с низкими потенциалами ионизации. Способ 6 благодаря большому энергетическому разбросу ионов обычно требует анализаторов с двойной фокусировкой даже для достижения разрешающей силы в несколько сотен единиц. Значения средних ионных токов, создаваемых ионным источником с ионизацией электронным ударом при энергии ионов в 40 - 100 эв и ширине щели источника Масс-спектрометры несколько десятков мкм (типичной для лабораторных М.-с.), составляют 10-10 - 10-9 а. Для других способов ионизации эти токи обычно меньше. "Мягкая" ионизация, т. е. ионизация молекул, сопровождаемая незначительной диссоциацией ионов, осуществляется с помощью электронов, энергия которых лишь на 1 - 3 эв превосходит энергию ионизации молекулы, а также с использованием способов 2, 3, 4. Получаемые при "мягкой" ионизации токи обычно Масс-спектрометры 10-12 - 10-14 а.

Регистрация ионных токов. Величины ионных токов, создаваемых в М.-с., определяют требования к их усилению и регистрации. Чувствительность применяемых в М.-с. усилителей Масс-спектрометры10-15 - 10-16 а при постоянной времени от 0,1 до 10 сек. Дальнейшее повышение чувствительности или быстродействия М.-с. достигается применением электронных умножителей, которые повышают чувствительность измерения токов в М.-с. до 10-18 - 10-19 а.

Примерно те же значения чувствительности достигаются при использовании фотографической регистрации ионов за счёт длительной экспозиции. Однако из-за малой точности измерения ионных токов и громоздкости устройств введения фотопластинок в вакуумную камеру анализатора фоторегистрация масс-спектров сохранила определенной значение лишь при очень точных измерениях масс, а также в тех случаях, когда необходимо одновременно регистрировать все линии масс-спектра из-за нестабильности источника ионов, например при элементном анализе в случае ионизации вакуумной искрой.

В СССР разрабатывается и выпускается много различной масс-спектральной аппаратуры. Принятая система индексов для М.-с. классифицирует приборы в основном не по типу устройства, а по назначению. Индекс состоит из двух букв (МИ - М.-с. изотопный, МХ - для химического анализа, МС - для физико-химических, в том числе структурных, исследований, МВ - прибор с высокой разрешающей способностью) и четырёх цифр, из которых первая указывает на используемый метод разделения ионов по массам (1 - в магнитном однородном поле, 2 - в магнитном неоднородном, 4 - магнито-динамический, 5 - время-пролётный, 6 - радиочастотный), вторая - на условия применения (1 - индикаторы, 2 - для производств, контроля, 3 - для лабораторных исследований, 4 - для спец. условий), а последние две являются номером модели. На рис. 12 показаны два М.-с., изготовленные в СССР. За рубежом М.-с. выпускаются несколько десятками фирм (США, Японии, ФРГ, Великобритании, Франции и Швеции).

Лит.: Астон Ф., Масс-спектры и изотопы, пер. с англ., М., 1948; Рафальсон А. Э., ШерешевскийА. М., Масс-спектрометрические приборы, М. - Л., 1968; Бейнон Дж., Масс-спектрометрия и её применение в органической химии, пер. с англ., М., 1964; Материалы 1 Всесоюзной конференции по масс-спектрометрии, Л., 1972; Джейрам Р., Масс-спектрометрия. Теория и приложения, пер. с англ., М., 1969; Полякова А. А., Хмельницкий Р. А., Масс-спектрометрия в органической химии, Л., 1972.

В. Л. Тальрозе.

Рис. 12. На столе большого масс-спектрометра с двойной фокусировкой для структурно-химического анализа МС-3301 с разрешающей силой RМасс-спектрометры5 ·104 лежит миниатюрный масс-спектрометр МХ-6407М (обведён квадратом), применявшийся для исследований ионосферы на искусственных спутниках Земли.

Рис. 11. Циклотронно-резонансный масс-анализатор. Высокочастотное электрическое поле в области анализатора позволяет идентифицировать ионы с данной величиной m/е по резонансному поглощению энергии ионами при совпадении частоты поля и циклотронной частоты ионов.

Рис. 10. Схема магнито-резонансного масс-анализатора; магнитное поле Н перпендикулярно плоскости рисунка.

Рис. 9. Анализатор омегатрона.

Рис. 8. Фарвитрон: 1 и 2 - электроды, между которыми колеблются ионы.

Рис. 7. Квадрупольный масс-анализатор: 1 и 2 - входное и выходное отверстия анализатора; 3 - траектории ионов; 4 - генератор высокочастотного напряжения.

Рис. 6. Схема радиочастотного масс-анализатора: 1, 2, 3 - сетки, образующие трёхсеточный каскад, на среднюю сетку 2 подано высокочастотное напряжение Uвч. Ионы с определённой скоростью и, следовательно, определённой массой, внутри каскада ускоряясь высокочастотным полем, получают больший прирост кинетической энергии, достаточный для преодоления тормозящего поля и попадания на коллектор.

Рис. 5. Схема время-пролётного масс-анализатора. Пакет ионов с массами m1 и m2 (чёрные и белые кружки), "вброшенный" в анализатор через сетку 1, движется в дрейфовом пространстве 2 так, что тяжёлые ионы (m1) отстают от лёгких (m2); 3 - коллектор ионов.

Рис. 4. Пример масс-анализатора с двойной фокусировкой. Пучок ускоренных ионов, вышедших из щели S1 источника ионов, последовательно проходит через электрическое поле цилиндрического конденсатора, который отклоняет ионы на 90°, затем через магнитное поле, отклоняющее ионы ещё на 60°, и фокусируется в щель S2 приёмника коллектора ионов.

Рис. 3. Схема статического магнитного анализатора с однородным магнитным полем; S1 и S2 - щели источника и приёмника ионов; ОАВ - область однородного магнитного поля Н, перпендикулярного плоскости рисунка, тонкие сплошные линии - границы пучков ионов с разными m/е; r - радиус центральной траектории ионов.

Рис. 2. Масс-спектр ториевого свинца (δm50\% - ширина пика на полувысоте; δm10\% - ширина пика на уровне 1/10 от максимальной интенсивности).

Рис. 1. Скелетная схема масс-спектрометра: 1 - система подготовки и введения исследуемого вещества; 2 - ионный источник; 3 - масс-анализатор; 4 - приемник ионов; 5 - усилитель; 6 - регистрирующее устройство; 7 - ЭВМ; 8 - система электрического питания; 9 - откачные устройства. Пунктиром обведена вакуумируемая часть прибора.

масс-спектрометрия         
  • Принцип работы масс-спектрометра
МЕТОД ИССЛЕДОВАНИЯ ВЕЩЕСТВА, ОСНОВАННЫЙ НА ОПРЕДЕЛЕНИИ ОТНОШЕНИЯ МАССЫ К ЗАРЯДУ ИОНОВ
Масс-спектроскопия; Масс-спектрометр; Хромато-масс-спектрометрия; Масс-спектрометрический анализ; Масс-спектрограф; Масс-анализатор; Масс-спектр; Масс-спектрография
ж.
Совокупность методов исследования вещества по спектру масс атомов или молекул, входящих в его состав.
Масс-спектрометрия         
  • Принцип работы масс-спектрометра
МЕТОД ИССЛЕДОВАНИЯ ВЕЩЕСТВА, ОСНОВАННЫЙ НА ОПРЕДЕЛЕНИИ ОТНОШЕНИЯ МАССЫ К ЗАРЯДУ ИОНОВ
Масс-спектроскопия; Масс-спектрометр; Хромато-масс-спектрометрия; Масс-спектрометрический анализ; Масс-спектрограф; Масс-анализатор; Масс-спектр; Масс-спектрография
Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) — метод исследования и идентификации вещества, позволяющий определять концентрацию различных компонентов в нём (изотопный, элементный или химический состав). Основой для измерения служит ионизация компонентов, позволяющая физически различать компоненты на основе характеризующего их отношения массы к заряду и, измеряя интенсивность ионного тока, производить отдельный подсчёт доли каждого из компонентов (получать масс-спектр веще�

Wikipedia

Масс, Дмитрий Вадимович

Димитрий (Дмитрий) Вадимович Масс (10 марта 1954 года, Рига) — советский российский кинооператор-постановщик.

Beispiele aus Textkorpus für Масс-спектрометры
1. В настоящее время уже создаются высокоточные масс-спектрометры, которые способны улавливать атомы элементарных частиц.
2. В частности, например, в Домодедово активно используются стационарные масс-спектрометры и рентгенографические сканеры.
3. В мире для этого всё больше и больше используются ускорительные масс-спектрометры, которых в разных странах уже более 30.
4. Парадокс заключался в том, что газовые хроматографы и масс-спектрометры, установленные на Vikingах, не сумели обнаружить жизнь не только на Марсе, но и на Земле.
5. Кроме этой продукции завод производит оборудование для выращивания монокристаллов, масс-спектрометры, установки для травления и осаждения тонких пленок в плазме электронно- циклотронного резонанса, специализированные компьютеры и различные конструктивы для электронной аппаратуры, функционирующей в в экстремальных условиях.