Параметрическое представление - Definition. Was ist Параметрическое представление
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Параметрическое представление - definition

Параметрическая кривая; Параметрическое представление функции; Параметрическое уравнение; Параметрическое представление кривых
  • Пример параметрической кривой.

Параметрическое представление         

функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных Параметров. В случае двух переменных х и у зависимость между ними F (х, у) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t, определяющую положение точки (х, у) на этой кривой (например, длину дуги, отсчитываемой со знаком + или - от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у:

x = φ(t), у = ψ(t). (*)

Последние функции и дадут П. п. функциональной зависимости между х и у, уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x2 + y2 = 1 имеем П. п. х= cos t, у = sin t (0 ≤ t < 2π) (параметрические уравнения окружности); для случая зависимости х22 = 1 имеем П. п. ; (t ≠ 0) или также х = cosec t, y=ctg t (- π< t < π, t ≠ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = φ(t), у = ψ (t), z = χ (t). Так, прямая в пространстве допускает П. п. х = а + mt; у = b + nt; z = с + pt, Винтовая линия - П. п. х = a cos t; у = a sin t; z = ct.

Для случая трёх переменных х, у и z, связанных зависимостью F (x, y, z) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и υ (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = φ(u, υ), у = ψ (u, υ); z = χ (u, υ). Например, для зависимости x2+ y2= (z2+1)2 имеем П. п. х = (u2-1) cos υ; у = (u2 + 1) sinυ; z = u. Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать Неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации (См. Униформизация).

Параметрическое представление         
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Представление знаний         
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении) и информатике, а также в исследовании вопросов, связанных с искусственным интеллектом.

Wikipedia

Параметрическое представление

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.