Пифагоровы числа - Definition. Was ist Пифагоровы числа
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Пифагоровы числа - definition

Пифагоровы тройки; Пифагоровы числа; Пифагоров треугольник; Пифагоровы треугольники
  • Примитивные пифагоровы тройки. Нечётный катет <math>a</math> отложен на горизонтальной оси, а чётный катет <math>b</math> — на вертикальной. Криволинейная сетка построена из кривых с постоянными величинами <math>m - n</math> и <math>m + n</math> в формуле Евклида
  • [[Диаграмма рассеяния]] катетов <math>(a, b)</math> пифагоровых троек с катетами, не превышающими 6000. Отрицательные значения включены для демонстрации параболических узоров
  • Диаграмма треугольников, полученных из формулы Евклида, показывающая часть конуса <math>z^2 = x^2 + y^2</math>, константы <math>m</math> или <math>n</math> задают след параболы на конусе
  • Демонстрация простейшей пифагоровой тройки; <math>x = a = 3, y = b = 4, z = c = 5</math>.
  • 3, 4, 5 отображается в точку (4/5, 3/5) единичной окружности
  • [[Диаграмма рассеяния]] катетов (''a'',''b'') пифагоровых троек с ''a'' и ''b'' не превосходящими 4500
  • стереографической проекции]] рациональным точкам прямой
  • P}}, в которой прямая пересекает окружность

Пифагоровы числа         

тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они удовлетворяли диофантову уравнению x2 + y2 = z2; таковы, например, числа х = 3, у = 4, z = 5. Все тройки взаимно простых П. ч. можно получить по формулам

х = m2 - n2; у = 2 mn; z = m2 + n2,

где m и n - целые числа, m > n > 0.

ПИФАГОРОВЫ ЧИСЛА         
тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5.
Пифагорова тройка         
Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел x,\;y,\;z, удовлетворяющих однородному квадратному уравнению x^2 + y^2 = z^2, описывающему теорему Пифагора. Их называют пифагоровыми числами.

Wikipedia

Пифагорова тройка

Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел x , y , z {\displaystyle x,\;y,\;z} , удовлетворяющих однородному квадратному уравнению x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}} , описывающему теорему Пифагора. Их называют пифагоровыми числами.

Треугольник с длинами сторон, образующими пифагорову тройку, является прямоугольным и также называется пифагоровым.

Was ist Пифаг<font color="red">о</font>ровы ч<font color="red">и</font>сла - Definition