Проведение нервного импульса - Definition. Was ist Проведение нервного импульса
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Проведение нервного импульса - definition

Закон сохранения количества движения; Сохранение импульса; Импульса сохранения закон

Проведение нервного импульса      

передача сигнала в виде волны возбуждения (См. Возбуждение) в пределах одного Нейрона и от одной клетки к другой. П. н. и. по нервным проводникам происходит с помощью электротонических потенциалов и потенциалов действия, которые распространяются вдоль волокна в обоих направлениях, не переходя на соседние волокна (см. Биоэлектрические потенциалы, Импульс нервный). Передача межклеточных сигналов осуществляется через синапсы чаще всего с помощью медиаторов, вызывающих появление потенциалов постсинаптических (См. Потенциалы постсинаптические). Нервные проводники можно рассматривать как кабели, обладающие относительно низким осевым сопротивлением (сопротивление аксоплазмы - ri) и более высоким сопротивлением оболочки (сопротивление мембраны - rm). Нервный импульс распространяется вдоль нервного проводника посредством прохождения тока между покоящимися и активными участками нерва (локальные токи). В проводнике по мере увеличения расстояния от места возникновения возбуждения происходит постепенное, а в случае однородной структуры проводника экспоненциальное затухание импульса, который в 2,7 раза уменьшается на расстоянии λ = (константа длины). Так как rm и ri находятся в обратном отношении к диаметру проводника, то затухание нервного импульса в тонких волокнах происходит раньше, чем в толстых. Несовершенство кабельных свойств нервных проводников восполняется тем, что они обладают Возбудимостью. Основное условие возбуждения - наличие у нервов потенциала покоя (См. Потенциал покоя). Если локальный ток через покоящийся участок вызовет деполяризацию (См. Деполяризация) мембраны, достигающую критического уровня (порога), это приведёт к возникновению распространяющегося потенциала действия (См. Потенциал действия) (ПД). Соотношение уровня пороговой деполяризации и амплитуды ПД, обычно составляющее не менее 1: 5, обеспечивает высокую надёжность проведения: участки проводника, обладающие способностью генерировать ПД, могут отстоять друг от друга на таком расстоянии, преодолевая которое нервный импульс снижает свою амплитуду почти в 5 раз. Этот ослабленный сигнал будет снова усилен до стандартного уровня (амплитуда ПД) и сможет продолжить свой путь по нерву.

Скорость П. н. и. зависит от быстроты, с которой мембранная ёмкость на участке впереди импульса разряжается до уровня порога генерации ПД, что, в свою очередь, определяется геометрическими особенностями нервов, изменениями их диаметра, наличием узлов ветвления. В частности, тонкие волокна обладают более высоким ri, и большей поверхностной ёмкостью, а потому скорость П. н. и. по ним ниже. В то же время толщина нервных волокон ограничивает возможности существования большого числа параллельных каналов связи. Конфликт между физическими свойствами нервных проводников и требованиями "компактности" нервной системы был разрешен появлением в ходе эволюции позвоночных т. н. мякотных (миелинизированных) волокон (см. Нервы). Скорость П. н. и. в миелинизированных волокнах теплокровных (несмотря на их малый диаметр - 4-20 мкм) достигает 100-120 м/сек. Генерация ПД происходит только в ограниченных участках их поверхности - перехватах Ранвье, а по межперехватным участкам П. и. и. осуществляется электротонически (см. Сальтаторное проведение). Некоторые лекарственные вещества, например анестетики, сильно замедляют вплоть до полного блока П. н. и. Этим пользуются в практической медицине для обезболивания.

Лит. см. при статьях Возбуждение, Синапсы.

Л. Г. Магазаник.

Закон сохранения импульса         
Зако́н сохране́ния и́мпульса (зако́н сохране́ния количества движения) — закон, утверждающий, что сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.
Тензор энергии-импульса         
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материиПолями материи (материальными полями) в общей теории относительности традиционно называются все поля, кроме гравитационного. и определяющий взаимодействие этих полей с гравитационным полем.

Wikipedia

Закон сохранения импульса

Зако́н сохране́ния и́мпульса (зако́н сохране́ния количества движения) — закон, утверждающий, что сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении системы в пустом пространстве импульс сохраняется во времени, а при наличии внешнего воздействия скорость изменения импульса определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородностью пространства.

Закон сохранения импульса впервые был сформулирован Р. Декартом.