Псевдосфера - Definition. Was ist Псевдосфера
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Псевдосфера - definition


Псевдосфера         

поверхность постоянной отрицательной кривизны (См. Кривизна), образуемая вращением особой кривой, т. н. трактрисы (см. Линия), около её асимптоты (см. рис.). Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной. Интерес к изучению П. обусловлен тем, что фигуры, начерченные на гладких частях этой поверхности, подчиняются законам неевклидовой геометрии Лобачевского. Этот факт, установленный в 1868 Э. Бельтрами, сыграл существенную роль в споре о реальности Лобачевского геометрии (См. Лобачевского геометрия).

Рис. к ст. Псевдосфера.

ПСЕВДОСФЕРА         
(от псевдо ... и сфера), поверхность, образуемая вращением трактрисы вокруг ее оси. На псевдосфере впервые наглядно истолкована геометрия Лобачевского.
Псевдосфера         
Псевдосфе́ра (или поверхность Бельтра́ми) — поверхность постоянной отрицательной кривизны, образуемая вращением трактрисы около её асимптоты. Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной.

Wikipedia

Псевдосфера
Псевдосфе́ра (или поверхность Бельтра́ми) — поверхность постоянной отрицательной кривизны, образуемая вращением трактрисы около её асимптоты. Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной.