Решающий усилитель - Definition. Was ist Решающий усилитель
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Решающий усилитель - definition

Эрбиевый усилитель; Волоконно-оптический усилитель
  • Упрощённая схема простого волоконно-оптического усилителя

Решающий усилитель      

в аналоговых вычислительных машинах (См. Аналоговая вычислительная машина), комплексное устройство, состоящее из постоянного тока усилителя (См. Постоянного тока усилитель) и внешних элементов, образующих цепь обратной связи (См. Обратная связь), предназначен для выполнения некоторых математических операций над аналоговыми величинами (как, например, суммирование, интегрирование, дифференцирование, умножение на постоянные коэффициенты и др.). Отсюда собственно усилитель без цепи обратной связи получил название операционного усилителя (ОУ). Р. у. могут быть пневматическими, гидравлическими, магнитными и др.; наиболее распространены электронные Р. у., в которых в качестве сигналов используется электрическое напряжение или ток.

При появлении на входах Р. у. (рис. 1) одного или нескольких входных напряжений через входные сопротивления протекают токи l1,..., Iт, суммирующиеся в точке Z на входе ОУ. Поскольку коэффициент усиления ОУ делают очень большим, напряжение в точке Σ практически равно 0. Благодаря этому . Но , ...,, и поэтому . Отношение определяет заданную математическую операцию по входу i. Если , то Р. у. осуществляет алгебраическое суммирование входных напряжений. Если , причём Zi и Zoc - активные сопротивления, то суммирование осуществляется с одновременным умножением слагаемых на постоянные коэффициенты ki. В случае включения в цепь обратной связи комплексных сопротивлений происходит более сложное преобразование входных сигналов во времени. Например, если Zi - активные сопротивления (равные Ri), а цепь обратной связи образована ёмкостью Coc, то , т. е. происходит интегрирование суммы входных напряжений по времени. При использовании в цепях обратной связи нелинейных сопротивлений Р. у. позволяют выполнять нелинейные операции (возведение в степень, нахождение тригонометрических функций, перемножение и др.).

Погрешность при выполнении операций Р. у. обусловлена неточностью номиналов элементов цепи обратной связи, их нестабильностью и неидеальностью ОУ. Погрешность тем меньше, чем больше коэффициент усиления ky и входное сопротивление ОУ и чем меньше его выходное сопротивление. Значительное влияние на увеличение погрешности оказывают паразитный входной ток IП, генерируемый ОУ, сдвиг нуля En и их нестабильность - дрейф во времени и при изменении температуры (см. Дрейф нулевого уровня), а также шумы. Динамическая погрешность Р. у. тем меньше, чем шире полоса пропускания и больше частота среза fCP (при которой ky Решающий усилитель 1), а также чем больше скорость нарастания Uвых.

Высококачественные ОУ обычно строят с несколькими параллельными каналами усиления (рис. 2). Такие ОУ обеспечивают ky = 108-109, Iп = 10-12-10-10 а, En = 1-50 мкв, fcp = 1-100 Мгц. ОУ с одним каналом усиления имеют ky = 10-11-10-6, Iп = 10-11-10-6, fcp = 1-20 Мгц.

Лит.: Полонников Д. Е., Решающие усилители, М., 1973; Проектирование и применение операционных усилителей, пер. с англ., М., 1974.

Д. Е. Полонников.

Рис. 1. Структурная схема решающего усилителя: Uвх1,..., Uвхn - напряжения (сигналы) на входах решающего усилителя; Z1, ..., Zn - входные сопротивления; Σ - суммирующая точка; Zoc - сопротивление цепи обратной связи; Uвых - выходное напряжение (сигнал); ОУ - операционный усилитель.

Рис. 2. Структурная схема операционного усилителя: Bx - вход операционного усилителя; С - разделительные конденсаторы; У1 - усилитель низкой частоты и постоянного тока; У2 - высокочастотный усилитель с ky Решающий усилитель 1; Уз - усилитель средней частоты; У4 - выходной широкополосный усилитель; Вых - выход операционного усилителя.

РЕШАЮЩИЙ УСИЛИТЕЛЬ      
в средствах аналоговой вычислительной техники - комплексное устройство, состоящее из усилителя постоянного тока и внешних радиоэлементов, образующих цепь отрицательной обратной связи; предназначен для выполнения некоторых математических операций (напр., суммирования, интегрирования, умножения на постоянный коэффициент) над аналоговыми величинами. Усилитель без цепи обратной связи называется операционным усилителем.
Усилитель низкой частоты         
  • Ламповый усилитель звуковой частоты для стереонаушников
  • Углы отсечки полуволны сигнала в различных режимах
  • ИМС для применения в усилителях мощности
  • ШИМ]] прямоугольное колебание, далее усиливаемое силовыми ключами и подаваемое на громкоговоритель через LC-фильтр нижних частот. Частота пилообразного сигнала выбирается много больше самой верхней частоты в спектре звукового сигнала.
  • Предварительный усилитель Technics
  • Трансформаторное согласование с нагрузкой
ЭЛЕМЕНТ СИСТЕМЫ УПРАВЛЕНИЯ ИЛИ ОБРАБОТКИ СИГНАЛОВ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ УВЕЛИЧЕНИЯ КАКОЙ-ЛИБО ХАРАКТЕРИСТИКИ ВХОДНОГО СИГНАЛА
Усилитель ЗЧ; УЗЧ; УНЧ; УМЗЧ; Усилитель звуковой частоты; Усилитель звуковых частот; Усилитель мощности; Усилитель мощности низкой частоты
Усили́тель звуково́й частоты́ (УЗЧ)ГОСТ 24388-88 Усилители сигналов звуковой частоты бытовые. Общие технические условия.

Wikipedia

EDFA

EDFA (англ. Erbium Doped Fiber Amplifier) — волоконно-оптический усилитель на оптическом волокне, легированном ионами эрбия.

Применяется в волоконно-оптических линиях передачи для восстановления уровня оптического сигнала. Преимуществом эрбиевых усилителей является отсутствие преобразования в электрический сигнал, возможность одновременного усиления сигналов с разными длинами волн, что обуславливает возможность усиления спектрально-мультиплексированного сигнала, практически точное соответствие рабочего диапазона эрбиевых усилителей области минимальных оптических потерь световодов на основе кварцевого стекла, сравнительно низкий уровень шума и простота включения в волоконно-оптическую систему.

По сравнению с другими типами оптических усилителей (рамановскими и полупроводниковыми), EDFA используется наиболее широко.