Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
Синусо́ида — плоская кривая, задаваемая в прямоугольных координатах уравнением
График уравнения [косинусоиды] вида
также зачастую называется синусоидой. Данный график получается из синусоидального сдвигом на в отрицательном направлении оси абсцисс. Термин «косинусоида» практически отсутствует в официальной литературе, поскольку является излишним.
В приведённых формулах a, b, c, d — постоянные;
Синусоидальное изменение какой-либо величины называется гармоническим колебанием. Примерами могут являться любые колебательные процессы начиная от качания маятника и кончая звуковыми волнами (гармонические колебания воздуха) — колебания напряжения в электрической сети переменного тока, изменение тока и напряжения в колебательном контуре и др. Также синусоида — проекция на плоскость винтовой линии, например, скрученного провода; рулон бумаги разрезанный наискось (косо усечённый цилиндр) и развернутый — край бумаги оказывается разрезанным по синусоиде.
Синусоида была впервые рассмотрена Робервалем в 1634 году. При вычислении площади под графиком циклоиды он рассмотрел вспомогательную кривую, образуемую проекциями точки окружности, катящейся по прямой, на вертикальный диаметр этой окружности. Роберваль назвал эту кривую «спутницей циклоиды»; позднее Оноре Фабри стал называть её «линией синусов».
Синусоида может пересекать прямую в бесконечном числе точек (например, график функции пересекает прямую в точках с координатами ). Из теоремы Безу следует, что любая кривая с таким свойством является трансцендентной.