ТЕПЛОТА: ТЕПЛОПЕРЕДАЧА - Definition. Was ist ТЕПЛОТА: ТЕПЛОПЕРЕДАЧА
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ТЕПЛОТА: ТЕПЛОПЕРЕДАЧА - definition

ХАРАКТЕРИСТИКА ФАЗОВОГО ПЕРЕХОДА ВЕЩЕСТВА (ТЕПЛОТА НА ЕДИНИЦУ ВЕЩЕСТВА)
Теплота испарения; Удельная теплота парообразования; Удельная теплота испарения; Энтальпия кипения

ТЕПЛОТА: ТЕПЛОПЕРЕДАЧА      
К статье ТЕПЛОТА
Теплопередача - это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).
Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.
Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).
Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения ?Т/?x разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала <в соответствующих единицах Вт/(м?К)>. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:
где q - тепловой поток, k - коэффициент теплопроводности, а A - площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак "минус" в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры.
Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин - коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.
Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.
Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств - от приборов микроэлектроники до линий электропередачи и больших электромагнитов. См. также СВЕРХПРОВОДИМОСТЬ
.
Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.
Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона
q = hA (TW . T?),
где q - тепловой поток (измеряемый в ваттах), A - площадь поверхности источника тепла (в м2), TW и T. - температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м2?К).
Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность - это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные.
Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса.
Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.
Лучистый теплообмен. Третий вид теплопередачи - лучистый теплообмен - отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение - это один из видов электромагнитного излучения. Другие его виды - радиоволновое, ультрафиолетовое и гамма-излучения - возникают в отсутствие разности температур.
На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.
Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана - Больцмана
где, как и ранее, q - тепловой поток (в джоулях в секунду, т.е. в Вт), A - площадь поверхности излучающего тела (в м2), а T1 и T2 - температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент . называется постоянной Стефана - Больцмана и равен (5,66961???0,00096)?10-8 Вт/(м2 ?К4).
Представленный закон теплового излучения справедлив лишь для идеального излучателя - так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных "серых" тел, в правую часть выражения, описывающего закон Стефана - Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.
Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей - это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.
Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м2. Солнечная энергия - источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.
ТЕПЛОТА СГОРАНИЯ         
КОЛИЧЕСТВО ВЫДЕЛИВШЕЙСЯ ТЕПЛОТЫ ПРИ ПОЛНОМ СГОРАНИИ МАССОВОЙ ИЛИ ОБЪЁМНОЙ ЕДИНИЦЫ ВЕЩЕСТВА
Теплопроизводительная способность; Теплотворная способность; Высшая теплота сгорания; Низшая теплота сгорания; Скрытая теплота сгорания; Теплота сгорания топлива
(теплота горения) , количество теплоты, выделяющейся при полном сгорании топлива. Рзличают теплоту сгорания низшую (без учета теплоты, израсходованной на испарение воды, содержащейся в топливе или образующейся при сгорании) и высшую, а также удельную и объемную.
Теплота сгорания         
КОЛИЧЕСТВО ВЫДЕЛИВШЕЙСЯ ТЕПЛОТЫ ПРИ ПОЛНОМ СГОРАНИИ МАССОВОЙ ИЛИ ОБЪЁМНОЙ ЕДИНИЦЫ ВЕЩЕСТВА
Теплопроизводительная способность; Теплотворная способность; Высшая теплота сгорания; Низшая теплота сгорания; Скрытая теплота сгорания; Теплота сгорания топлива

теплота горения, теплотворная способность, теплотворность, теплопроизводительность, калорийность, количество теплоты, выделяющееся при полном сгорании топлива (См. Топливо); измеряется в джоулях или калориях. Т. с., отнесённая к единице массы или объёма топлива, называется удельной Т. с. - кдж или ккал на 1 кг или м2. В Великобритании и США до внедрения метрической системы мер удельная Т. с. измерялась в британских тепловых единицах (Btu) на фунт (lb) (1Btu/lb= 2,326 кдж/кг). Удельная Т. с. - важнейший показатель практической ценности топлива. Т. с. определяют калориметрией (См. Калориметрия). Если вода, содержащаяся в топливе и образующаяся при сгорании водорода топлива, присутствует в виде жидкости, то количество выделившейся теплоты характеризуется высшей Т. с. (Qв). Если вода находится в виде пара, то Т. с. называется низшей (Он). Низшая и высшая Т. с. связаны следующей зависимостью:

Qн=Qв- k (W + 9H),

где W - количество воды в топливе, \% (по массе); Н - количество водорода в топливе, \% (по массе): k - коэффициент, равный 25 кдж/кг (6 ккал/кг).

В СССР, ФРГ и др. странах тепловые расчёты обычно ведут по низшей Т. с., в США, Великобритании, Франции - по высшей.

Т. с. может быть отнесена к рабочей массе топлива QP то есть к топливу в том виде, в каком оно поступает к потребителю; к сухой массе топлива Qc; к горючей массе топлива Qг, то есть к топливу, не содержащему влаги и золы.

Для приближённых подсчётов Т. с. определяют по эмпирическим формулам; например, Т. с. твёрдых и жидких топлив вычисляют по формуле Менделеева:

QP=81CP+З00Нр-26(Ор-Spл) - 6 (9Hp+WP),

где Ср, Hp, Ор, Spл, Wp - содержание в рабочей массе топлива углерода, водорода, кислорода, летучей серы и влаги в \% (по массе).

Для сравнительных расчётов используется так называемое Топливо условное, имеющее удельную Т. с., равную 29308 кдж/кг (7000 ккал/кг).

И. Н. Розенгауз.

Wikipedia

Удельная теплота парообразования и конденсации

Уде́льная теплота́ парообразова́ния и конденса́ции — физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить количество жидкости с единичной массой в пар, при данной температуре жидкости и без её изменения (температуры) в процессе испарения. Равна удельной теплоте конденсации единичной массы пара в жидкость.

Was ist ТЕПЛОТА: ТЕПЛОПЕРЕДАЧА - Definition