Чебышева многочлены - Definition. Was ist Чебышева многочлены
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Чебышева многочлены - definition

ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева
  • Многочлены Чебышёва второго рода
  • Многочлены Чебышёва первого рода

ЧЕБЫШЕВА МНОГОЧЛЕНЫ         
специальная система многочленов, ортогональных с весом (Чебышева многочлен 1-го рода) или с весом (Чебышева многочлен 2-го рода) на отрезке [-1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым.
Чебышева многочлены         

1) Ч. м. 1-го рода - специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... определяются формулой:

В частности, Т0 = 1; T1 = х; T2 = 2x2 ―1; T3 = 4x3 ― 3x; T4 = 8x4 8x2 + 1. Ч. м. Tn (x) ортогональны (см. Ортогональные многочлены) на отрезке [-1; + 1] относительно веса (1 - x2)―1/2. Дифференциальное уравнение:

(1 - x2) у" - ху + n2у = 0.

Рекуррентная формула: Tn+1(x) = 2xTn (х) - Tn―1(x).

Ч. м. 1-го рода являются частным случаем Якоби многочленов (См. Якоби многочлены) Pn (αβ)(x):

.

2) Ч. м. 2-го рода Un (x) - ортогональная на отрезке [-1; + 1] относительно веса (1 -x2)1/2 система многочленов, связанная с Ч. м. 1-го рода, например рекуррентным соотношением:

(1 - x2) Un―1(х) = xTn (х) Tn+1(х).

Лит.: Чебышев П. Л., Полн. собр. соч., т. 2-3, М.-Л., 1947-48; Сеге Г., Ортогональные многочлены, пер. с англ., М., 1962.

Неравенство Маркова         
Лемма Чебышева
Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что неотрицательная случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Wikipedia

Многочлены Чебышёва

Многочле́ны Чебышёва — две последовательности ортогональных многочленов T n ( x ) {\displaystyle T_{n}(x)} и U n ( x ) , n = { 0 , 1 , } , {\displaystyle U_{n}(x),n=\{0,1,\dots \},} названные в честь Пафнутия Львовича Чебышёва:

  • Многочлен Чебышёва первого рода T n ( x ) {\displaystyle T_{n}(x)} характеризуется как многочлен степени n {\displaystyle n} со старшим коэффициентом 2 n 1 {\displaystyle 2^{n-1}} , который меньше всего отклоняется от нуля на отрезке [ 1 , 1 ] {\displaystyle [-1,1]} . Впервые рассмотрены самим Чебышёвым.
  • Многочлен Чебышёва второго рода U n ( x ) {\displaystyle U_{n}(x)} характеризуется как многочлен степени n {\displaystyle n} со старшим коэффициентом 2 n {\displaystyle 2^{n}} , интеграл от абсолютной величины которого по отрезку [ 1 , 1 ] {\displaystyle [-1,1]} принимает наименьшее возможное значение. Впервые рассмотрены в совместной работе двух учеников Чебышёва — Коркина и Золотарёва.

Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.

Was ist ЧЕБЫШЕВА МНОГОЧЛЕНЫ - Definition