Шмидта число - Definition. Was ist Шмидта число
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Шмидта число - definition

БЕЗРАЗМЕРНОЕ ЧИСЛО, ПОКАЗЫВАЮЩЕЕ СООТНОШЕНИЕ ИНТЕНСИВНОСТЕЙ ДИФФУЗИИ ИМПУЛЬСА (ТО ЕСТЬ ВЯЗКОСТЬ) И ДИФФУЗИИ ВЕЩЕСТВА
Шмидта число; Критерий Шмидта

Шмидта число         

один из подобия критериев (См. Подобия критерии) движений жидкостей или газов, в которых существенны процессы внутреннего трения и диффузии. Ш. ч. - диффузионный аналог Прандтля числа (См. Прандтля число) - представляет собой отношение коэффициента кинематической вязкости v жидкости или газа к коэффициенту диффузии D. Ш. ч. Sc= v/D, где v = μ/ρ (μ - коэффициент вязкости, ρ - плотность). Ш. ч. характеризует относительную роль молекулярных процессов переноса количества движения и переноса массы примеси диффузией. В совершенных газах Sc = 1, т. к. v = D; в реальных газах оно может отличаться от 1. Названо в честь В. М. Шмидта. Ш. ч. часто называют диффузионным числом Прандтля, которое обозначают PrD.

Число Шмидта         
Число Шмидта (\mathrm{Sc}) — безразмерное число, показывающее соотношение интенсивностей диффузии импульса (то есть вязкость) и диффузии вещества, то есть характеризует относительную роль молекулярных процессов переноса количества движения и переноса массы примеси диффузией. Оно является критерием подобия для течений жидкости, в которых наблюдаются одновременно как переносы вещества (обычно примеси), так и вязкие эффекты.
Процесс Грама ― Шмидта         
  • Рис. 1. Второй шаг процесса Грама — Шмидта
  • Рис. 2. Третий шаг процесса Грама — Шмидта
Ортогонализация Грама-Шмидта; Ортогонализация Грама ― Шмидта; Процесс Грама — Шмидта; Процесс Грамма ― Шмидта; Метод ортогонализации Грама — Шмидта
Процесс Грама ― Шмидта преобразует последовательность линейно независимых векторов \mathbf{a}_1,\;\ldots,\;\mathbf{a}_n в ортонормированную систему векторов \mathbf{e}_1,\;\ldots,\;\mathbf{e}_n, причём так, что каждый вектор \mathbf{e}_j есть линейная комбинация \mathbf{a}_1,\;\ldots,\;\mathbf{a}_j.

Wikipedia

Число Шмидта

Число Шмидта ( S c {\displaystyle \mathrm {Sc} } ) — безразмерное число, показывающее соотношение интенсивностей диффузии импульса (то есть вязкость) и диффузии вещества, то есть характеризует относительную роль молекулярных процессов переноса количества движения и переноса массы примеси диффузией. Оно является критерием подобия для течений жидкости, в которых наблюдаются одновременно как переносы вещества (обычно примеси), так и вязкие эффекты.

По одной версии число было названо в честь немецкого инженера Эрнста Шмидта, по другой — в честь австрийского геофизика Вильгельма Матеуса Шмидта.

Число Шмидта равно отношению коэффициентов кинематической вязкости к коэффициенту диффузии вещества (или коэффициенту массопереноса). Оно также равно отношению толщин гидродинамического пограничного слоя и слоя массопереноса.

Определение числа Шмидта в виде формулы:

S c = ν D , {\displaystyle \mathrm {Sc} ={\frac {\nu }{D}},}

где:

  • ν {\displaystyle \nu } — кинематическая вязкость, м2·с−1;
  • D {\displaystyle D} — коэффициент диффузии, м2·с−1.

Таким образом, его величина показывает, насколько импульс переносится эффективнее вещества.

В совершенных газах S c = 1 {\displaystyle \mathrm {Sc} =1} , так как ν = D {\displaystyle \nu =D} ; в реальных газах оно может отличаться от 1 на десятки процентов. В жидкостях оно порядка 1 000, в жидких металлах порядка 10.

Аналог числа Шмидта для переноса тепла — число Прандтля. В связи с этим число Шмидта часто называют диффузионным числом Прандтля и обозначают P r D {\displaystyle \mathrm {Pr} _{D}} .

Was ist Шм<font color="red">и</font>дта числ<font color="red">о</font> - Definition