кратный - Definition. Was ist кратный
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist кратный - definition

АРГУМЕНТ, ПРИ КОТОРОМ МНОГОЧЛЕН ПРИНИМАЕТ ЗНАЧЕНИЕ НУЛЬ
Корень алгебраического уравнения; Кратный корень; Кратность корня многочлена
  • Из графика многочлена <math>x^3-6x^2+11x-6</math> видно, что у него три корня: 1, 2 и 3.

кратный      
КР'АТНЫЙ, кратная, кратное; кратен, кратна, кратно (мат.).
1. Делящийся без остатка на какое-нибудь число. Число десять кратно пяти и двум.
2. в знач. сущ. кратное, кратного, ср. Целое число, делящееся на данное. Десять - кратное двух. Общее наименьшее кратное нескольких чисел (наименьшее из целых чисел, делящихся на любое из данных чисел).
КРАТНЫЙ      
В математике: делящийся без остатка на какое-нибудь число.
Девять - число, кратное трем. Девять - кратное(сущ.) трех.
кратный      
прил.
Делящийся без остатка на какое-л. число (в математике).

Wikipedia

Корень многочлена

Корень многочлена (не равного тождественно нулю)

a 0 + a 1 x + + a n x n {\displaystyle a_{0}+a_{1}x+\dots +a_{n}x^{n}}

над полем K {\displaystyle K}  — это элемент c K {\displaystyle c\in K} (либо элемент расширения поля K {\displaystyle K} ) такой, что выполняются два следующих равносильных условия:

  • данный многочлен делится на многочлен x c {\displaystyle x-c} ;
  • подстановка элемента c {\displaystyle c} вместо x {\displaystyle x} обращает уравнение
a 0 + a 1 x + + a n x n = 0 {\displaystyle a_{0}+a_{1}x+\dots +a_{n}x^{n}=0}

в тождество, то есть значение многочлена становится равным нулю.

Равносильность двух формулировок следует из теоремы Безу. В различных источниках любая одна из двух формулировок выбирается в качестве определения, а другая выводится в качестве теоремы.

Говорят, что корень c {\displaystyle c} имеет кратность m {\displaystyle m} , если рассматриваемый многочлен делится на ( x c ) m {\displaystyle (x-c)^{m}} и не делится на ( x c ) m + 1 . {\displaystyle (x-c)^{m+1}.} Например, многочлен x 2 2 x + 1 {\displaystyle x^{2}-2x+1} имеет единственный корень, равный 1 {\displaystyle 1} кратности 2 {\displaystyle 2} . Выражение «кратный корень» означает, что кратность корня больше единицы.

Говорят, что многочлен имеет n {\displaystyle n} корней без учёта кратности, если каждый его корень учитывается при подсчёте один раз. Если же каждый корень учитывается количество раз, равное его кратности, то говорят, что подсчёт ведётся с учётом кратности.

Beispiele aus Textkorpus für кратный
1. ДИНАМО Загреб Основан в 1'11 году. 11-кратный чемпион Хорватии, '-кратный обладатель Кубка Хорватии, 8-кратный обладатель Суперкубка Хорватии, '-кратный чемпион Югославии, 7-кратный обладатель Кубка Югославии.
2. Поздняков - 4-кратный олимпийский чемпион, 8-кратный чемпион мира, 11-кратный чемпион Европы, 5-кратный обладатель Кубка мира.
3. Первый чемпион СССР, первый обладатель Кубка СССР (оба в 1'36 году). 15-кратный чемпион СССР, 13-кратный обладатель Кубка СССР, 11-кратный серебряный призер, 5-кратный бронзовый призер.
4. Президент Федерации хоккея России. 3-кратный олимпийский чемпион, 10-кратный чемпион мира, '-кратный чемпион Европы, 13-кратный чемпион СССР, обладатель Кубка Канады.
5. Существует с 1'26 года. 14-кратный чемпион СССР, 7-кратный серебряный и бронзовый призер, 4-кратный обладатель Кубка СССР, 11-кратный победитель Кубка европейских чемпионов.
Was ist кратный - Definition