физиол - Definition. Was ist физиол
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist физиол - definition

МЫШЦ
Релаксация (физиол., мед.); Миорелаксация; Прогрессивная мышечная релаксация

Релаксация         
I Релакса́ция (от лат. relaxatio - ослабление, уменьшение)

процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц. Р. - многоступенчатый процесс, т. к. не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и др.) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется Р. Все процессы Р. являются неравновесными процессами (См. Неравновесные процессы), при которых в системе происходит диссипация энергии, т. е. производится Энтропия (в замкнутой системе энтропия возрастает). В различных системах Р. имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы Р. весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Процесс установления равновесия в газах определяется длиной свободного пробега частиц l и временем свободного пробега τ (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/τ имеет порядок величины скорости частиц. Величины l и τ очень малы по сравнению с макроскопическими масштабами длины и времени. С др. стороны, для газов время свободного пробега значительно больше времени столкновения τ0 (τ >> τ0). Только при этом условии Р. определяется лишь парными столкновениями молекул.

В одноатомных газах (без внутренних степеней свободы, т. е. обладающих только поступательными степенями свободы) Р. происходит в два этапа. На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным т. н. "сокращённое описание" неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, т. е. одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию). Одночастичная функция удовлетворяет кинетическому уравнению Больцмана (См. Кинетическое уравнение Больцмана), которое описывает процесс Р. Этот этап называется кинетическим и является очень быстрым процессом Р. На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе Р. медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время Р. для локального равновесия τр ≈ τ0. После установления локального равновесия для описания Р. неравновесного состояния системы служат уравнения гидродинамики (Навье - Стокса уравнения, уравнения теплопроводности (См. Теплопроводность), диффузии (См. Диффузия) и т.п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время τ и на расстоянии l. Этот этап Р. называется гидродинамическим. Дальнейшая Р. системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений. Такие процессы (Вязкость, теплопроводность, диффузия, Электропроводность и т. п.) называются медленными. Соответствующее время P. tp зависит от размеров L системы и велико по сравнению с τ: t0 Релаксация τ(L/l)2 >> τ, что имеет место при l << L, т.е. для не сильно разреженных газов.

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс Р., связанный с этим явлением. Быстрее всего - за время порядка времени между столкновениями - устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных τгазах возможны многоступенчатые процессы Р. энергии колебательных и вращательных степеней свободы.

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы Р. их температур. Например, в плазме (См. Плазма) сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы Р. температур компонент.

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины τ1 и l1 - время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; τ1 и l1 характеризуют затухание во времени и в пространстве взаимного влияния молекул, т. е. корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа Р. и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции l1, локально-равновесное распределение устанавливается за время порядка времени корреляции τ1p ≈ τ1) в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе Р. в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время τ1 и на расстоянии l1). Время Р. к полному термодинамическому равновесию tp ≈ τ1 (L/l1)2 (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов (см. Кинетика физическая). Например, время Р. концентрации в бинарной смеси в объёме L3 порядка tp L2/D, где D - коэффициент диффузии, время Р. температуры tp L2 где χ - коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания Р. внутренних степеней свободы (релаксационная гидродинамика).

В твёрдых телах, как и в квантовых жидкостях (См. Квантовая жидкость), Р. можно описывать как Р. в газе квазичастиц (См. Квазичастицы). В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы). Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ Фононов. Взаимодействие между фононами приводит к квантовым переходам, т. е. к столкновениям между ними. Р. энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика (См. Ферромагнетики) квазичастицами являются Магноны; Р. (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Р. магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия (См. Обменное взаимодействие) устанавливается равновесное значение абсолютной величины магнитного момента. На втором этапе за счёт слабого спин-орбитального взаимодействия (См. Спин-орбитальное взаимодействие) магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу Р. в газах (см. Релаксация магнитная).

Лит.: Уленбек Д., форд Дж., Лекции по статистической механике, пер. с англ., М., 1965. См. также лит. при ст. Кинетика физическая.

Д. Н. Зубарев.

II Релакса́ция

расслабление (физиологическая, медицинская), понижение Тонуса скелетной мускулатуры, вызываемое, в частности, различными химическими веществами и проявляющееся в снижении двигательной активности или полном обездвижении (параличе). Широта распространения, степень и продолжительность Р. зависят от места нарушения проведения нервного импульса (См. Проведение нервного импульса) и примененного химического вещества. Наркотические средства действуют на центральные отделы нервной системы и вызывают распространённую, но неполную Р. Вещества, используемые для местной анестезии, действуют на периферические нервы, вызывая местную неполную Р. Наиболее распространённая и полная Р. наблюдается при введении специальных препаратов - мышечных релаксантов (См. Релаксанты).

Лит. см. при статьях Курареподобные средства и Курарины.

РЕЛАКСАЦИЯ         
и, ж.
1. физ. Процесс постепенного возвращения какой-нибудь системы в состояние равновесия (после пре-кращения действия факторов, выведших ее из этого состояния).
2. мед. Искусственное снижение тонуса поперечнополосатой мускулатуры, осуществляемое при некоторых хирургических операциях. Релаксационный - относящийся к релаксации.
РЕЛАКСАЦИЯ         
в физиологии - расслабление или резкое снижение тонуса скелетной мускулатуры вплоть до полного обездвижения. Может возникнуть как патологическое состояние; искусственная релаксация достигается применением миорелаксантов.

Wikipedia

Релаксация

Релакса́ция, миорелакса́ция (от лат. relaxatio «ослабление, расслабление») — снижение тонуса скелетной мускулатуры. Релаксация может быть достигнута в результате применения специальных психофизиологических техник, физиотерапии и лекарственных препаратов. Считается, что релаксация способствует снятию психического напряжения, из-за чего она широко применяется в психотерапии, при гипнозе и самогипнозе, в йоге и во многих других оздоровительных системах. Релаксация, наряду с медитацией, приобрела большую популярность как средство борьбы со стрессом и психосоматическими заболеваниями.

Релаксация особенно эффективна для людей с повышенным мышечным тонусом. Доказано, что повышенный мышечный тонус ведёт к развитию заболеваний. Для людей с пониженным мышечным тонусом эффект релаксации будет меньше. Резкое или прогрессирующее снижение или повышение мышечного тонуса может быть результатом болезни.

Was ist Релаксация - Definition