R method - Übersetzung nach arabisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

R method - Übersetzung nach arabisch

Schrodinger method; Schroedinger method; Schrodinger's method; Schroedinger's method; Schrödinger's method

R method      
‎ التَّلْوِيْنُ بطَرِيْقَةِ R:للخلايا العصبية‎
r         
  • x30px
  • 18th-century example of use of ''r rotunda'' in English blackletter typography
  • 20px
  • 20px
  • Early Greek Rho
  • Cursive R-rotunda
  • Letter ''R'' from the alphabet by [[Luca Pacioli]], in ''[[De divina proportione]]'' (1509)
  • x30px
  • The word ''prognatus'' as written on the [[Sarcophagus of Lucius Cornelius Scipio Barbatus]] (280 BC) reveals the full development of the Latin ''R'' by that time; the letter ''P'' at the same time still retains its archaic shape distinguishing it from Greek or Old Italic ''rho''.
  • x40px
LETTER OF THE LATIN ALPHABET
ℛ; Vōx canīna; R; R (letter); Ʀ (letter); Vox Canina; ASCII 82; ASCII 114; U+0052; U+0072; Vōx Canīna; Vox canina; Littera canīna; Littera canina; Letter R; Letter r
رمز الصِّبْغِيِّ الحَلَقِيّ
R         
  • x30px
  • 18th-century example of use of ''r rotunda'' in English blackletter typography
  • 20px
  • 20px
  • Early Greek Rho
  • Cursive R-rotunda
  • Letter ''R'' from the alphabet by [[Luca Pacioli]], in ''[[De divina proportione]]'' (1509)
  • x30px
  • The word ''prognatus'' as written on the [[Sarcophagus of Lucius Cornelius Scipio Barbatus]] (280 BC) reveals the full development of the Latin ''R'' by that time; the letter ''P'' at the same time still retains its archaic shape distinguishing it from Greek or Old Italic ''rho''.
  • x40px
LETTER OF THE LATIN ALPHABET
ℛ; Vōx canīna; R; R (letter); Ʀ (letter); Vox Canina; ASCII 82; ASCII 114; U+0052; U+0072; Vōx Canīna; Vox canina; Littera canīna; Littera canina; Letter R; Letter r
‎ رمز الرونتغين,جَذْرٌ عُضوِيّ,مختصر يُؤْخَذْ في الوَصْفاتِ الطِبِّيَّة,رمز الصِّبْغِيِّ الحَلَقِيّ‎

Definition

class method
<programming> A kind of method, available in some object-oriented programming languages, that operates on the class as a whole, as opposed to an object method that operates on an object that is an instance of the class. A typical example of a class method would be one that keeps a count of the number of objects of that class that have been created. (2000-03-22)

Wikipedia

Schrödinger method

In combinatorial mathematics and probability theory, the Schrödinger method, named after the Austrian physicist Erwin Schrödinger, is used to solve some problems of distribution and occupancy.

Suppose

X 1 , , X n {\displaystyle X_{1},\dots ,X_{n}\,}

are independent random variables that are uniformly distributed on the interval [0, 1]. Let

X ( 1 ) , , X ( n ) {\displaystyle X_{(1)},\dots ,X_{(n)}\,}

be the corresponding order statistics, i.e., the result of sorting these n random variables into increasing order. We seek the probability of some event A defined in terms of these order statistics. For example, we might seek the probability that in a certain seven-day period there were at most two days in on which only one phone call was received, given that the number of phone calls during that time was 20. This assumes uniform distribution of arrival times.

The Schrödinger method begins by assigning a Poisson distribution with expected value λt to the number of observations in the interval [0, t], the number of observations in non-overlapping subintervals being independent (see Poisson process). The number N of observations is Poisson-distributed with expected value λ. Then we rely on the fact that the conditional probability

P ( A N = n ) {\displaystyle P(A\mid N=n)\,}

does not depend on λ (in the language of statisticians, N is a sufficient statistic for this parametrized family of probability distributions for the order statistics). We proceed as follows:

P λ ( A ) = n = 0 P ( A N = n ) P ( N = n ) = n = 0 P ( A N = n ) λ n e λ n ! , {\displaystyle P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n)P(N=n)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n}e^{-\lambda } \over n!},}

so that

e λ P λ ( A ) = n = 0 P ( A N = n ) λ n n ! . {\displaystyle e^{\lambda }\,P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n} \over n!}.}

Now the lack of dependence of P(A | N = n) upon λ entails that the last sum displayed above is a power series in λ and P(A | N = n) is the value of its nth derivative at λ = 0, i.e.,

P ( A N = n ) = [ d n d λ n ( e λ P λ ( A ) ) ] λ = 0 . {\displaystyle P(A\mid N=n)=\left[{d^{n} \over d\lambda ^{n}}\left(e^{\lambda }\,P_{\lambda }(A)\right)\right]_{\lambda =0}.}

For this method to be of any use in finding P(A | N =n), must be possible to find Pλ(A) more directly than P(A | N = n). What makes that possible is the independence of the numbers of arrivals in non-overlapping subintervals.