functor - Übersetzung nach arabisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

functor - Übersetzung nach arabisch

IN CATEGORY THEORY, A MAPPING BETWEEN CATEGORIES THAT PRESERVES THEIR STRUCTURE (IDENTITY MORPHISMS, COMPOSITION OF MORPHISMS)
Covariant functor; Contravariant functor; Cofunctor; Functorial; Functors; Functoriality; Endofunctor; Bifunctor; Covariance and contravariance of functors; Identity functor; Multifunctor; Functor (category theory); Covariance (categories); Opposite functor; Constant functor; Selection functor; Category homomorphism; Dual functor; Covariance and contravariance (category theory)

FUNCTOR         

ألاسم

اِقْتِران ; دالَّة

الفعل

اِشْتَغَلَ ; عَمِلَ ; قامَ بِـ

functor         
قارن/ رابط
FUNCTORS         

ألاسم

اِقْتِران ; دالَّة

الفعل

اِشْتَغَلَ ; عَمِلَ ; قامَ بِـ

Definition

functor
In category theory, a functor F is an operator on types. F is also considered to be a polymorphic operator on functions with the type F : (a -> b) -> (F a -> F b). Functors are a generalisation of the function "map". The type operator in this case takes a type T and returns type "list of T". The map function takes a function and applies it to each element of a list. (1995-02-07)

Wikipedia

Functor

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

The words category and functor were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used functor in a linguistic context; see function word.