number, base - Übersetzung nach arabisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

number, base - Übersetzung nach arabisch

POSITIONAL NUMERAL SYSTEM
Phinary; Golden mean base; Base Phi; Base-phi; Base φ; Base-φ; Golden-ratio base; Base phi; Base-ph; Base ph; Base phi number system; Base Phi number system; Base φ number system

number, base      
أساس الترقيم
radix         
IN A POSITIONAL NUMERAL SYSTEM, THE NUMBER OF UNIQUE DIGITS, INCLUDING THE DIGIT 0, USED TO REPRESENT NUMBERS
Number base; Bases and number systems; DECIMAL TO BINARY / HEXADECIMAL TO BINARY; Numeral base; Number bases; Base (radix); Base of computation
‎ جَذْر‎
RADIX         
IN A POSITIONAL NUMERAL SYSTEM, THE NUMBER OF UNIQUE DIGITS, INCLUDING THE DIGIT 0, USED TO REPRESENT NUMBERS
Number base; Bases and number systems; DECIMAL TO BINARY / HEXADECIMAL TO BINARY; Numeral base; Number bases; Base (radix); Base of computation

ألاسم

أَسَاس

Definition

base jumping
noun perform such a jump.

Wikipedia

Golden ratio base

Golden ratio base is a non-integer positional numeral system that uses the golden ratio (the irrational number 1 + 5/2 ≈ 1.61803399 symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" – this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φ (φ1) + 1 (φ0) = φ2. For instance, 11φ = 100φ.

Despite using an irrational number base, when using standard form, all non-negative integers have a unique representation as a terminating (finite) base-φ expansion. The set of numbers which possess a finite base-φ representation is the ring Z[1 + 5/2]; it plays the same role in this numeral systems as dyadic rationals play in binary numbers, providing a possibility to multiply.

Other numbers have standard representations in base-φ, with rational numbers having recurring representations. These representations are unique, except that numbers with a terminating expansion also have a non-terminating expansion. For example, 1 = 0.1010101… in base-φ just as 1 = 0.99999… in base-10.