neighbour$548178$ - Übersetzung nach griechisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

neighbour$548178$ - Übersetzung nach griechisch

SPATIAL INTERPOLATION METHOD
Natural neighbour; Natural neighbour interpolation; Natural neighbor

neighbour      
γειτονεύω
golden rule         
  • ''The Sermon on the Mount'' by [[Carl Bloch]] (1877) portrays [[Jesus]] teaching during the [[Sermon on the Mount]]
  • The golden rule, as described in numerous world religions
PRINCIPLE OF TREATING OTHERS AS ONE WANTS TO BE TREATED
Golden rule; Ethic of Reciprocity; Supreme Law; Golden Rule (ethics); User:For7thGen/Golden Rule; Silver Rule; Golden rule (ethics); Ethics of reciprocity; Christianity's Golden Rule; Golden rules; Reciprocity rule; Do unto others; Do as you would be done by; Silver rule; Ethic of reciprocity; The golden Rule; The Golden rule (ethics); The Golden Rule (ethics); The Silver Rule; The Golden Rule; Golden maxim; Golden Maxim; Do Unto Others; Love of neighbor; Love of neighbour; Regula aurea; Platinum Rule (principle); Love thy neighbour as thyself
χρυσός κανόνας

Definition

beggar-my-neighbour
¦ noun a card game for two players in which the object is to acquire one's opponent's cards.
¦ adjective (of national policy) self-aggrandizing at the expense of competitors.

Wikipedia

Natural neighbor interpolation

Natural neighbor interpolation is a method of spatial interpolation, developed by Robin Sibson. The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

The basic equation is:

G ( x ) = i = 1 n w i ( x ) f ( x i ) {\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}}

where G ( x ) {\displaystyle G(x)} is the estimate at x {\displaystyle x} , w i {\displaystyle w_{i}} are the weights and f ( x i ) {\displaystyle f(x_{i})} are the known data at ( x i ) {\displaystyle (x_{i})} . The weights, w i {\displaystyle w_{i}} , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting x {\displaystyle x} into the tessellation.

Sibson weights
w i ( x ) = A ( x i ) A ( x ) {\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}}

where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

Laplace weights
w i ( x ) = l ( x i ) d ( x i ) k = 1 n l ( x k ) d ( x k ) {\displaystyle w_{i}(\mathbf {x} )={\frac {\frac {l(\mathbf {x} _{i})}{d(\mathbf {x} _{i})}}{\sum _{k=1}^{n}{\frac {l(\mathbf {x} _{k})}{d(\mathbf {x} _{k})}}}}}

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.