Schubert$72671$ - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Schubert$72671$ - Übersetzung nach Englisch

Schubert cell; Schubert cycle; Schubert varieties

Schubert      
n. Schubert (Franz, compositore austriaco)

Definition

Relique

Wikipedia

Schubert variety

In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, usually with singular points. Like a Grassmannian, it is a kind of moduli space, whose points correspond to certain kinds of subspaces V, specified using linear algebra, inside a fixed vector subspace W. Here W may be a vector space over an arbitrary field, though most commonly over the complex numbers.

A typical example is the set X whose points correspond to those 2-dimensional subspaces V of a 4-dimensional vector space W, such that V non-trivially intersects a fixed (reference) 2-dimensional subspace W2:

X   =   { V W dim ( V ) = 2 , dim ( V W 2 ) 1 } . {\displaystyle X\ =\ \{V\subset W\mid \dim(V)=2,\,\dim(V\cap W_{2})\geq 1\}.}

Over the real number field, this can be pictured in usual xyz-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of P ( W ) {\displaystyle \mathbb {P} (W)} , we obtain an open subset X° ⊂ X. This is isomorphic to the set of all lines L (not necessarily through the origin) which meet the x-axis. Each such line L corresponds to a point of X°, and continuously moving L in space (while keeping contact with the x-axis) corresponds to a curve in X°. Since there are three degrees of freedom in moving L (moving the point on the x-axis, rotating, and tilting), X is a three-dimensional real algebraic variety. However, when L is equal to the x-axis, it can be rotated or tilted around any point on the axis, and this excess of possible motions makes L a singular point of X.

More generally, a Schubert variety is defined by specifying the minimal dimension of intersection between a k-dimensional V with each of the spaces in a fixed reference flag W 1 W 2 W n = W {\displaystyle W_{1}\subset W_{2}\subset \cdots \subset W_{n}=W} , where dim W j = j {\displaystyle \dim W_{j}=j} . (In the example above, this would mean requiring certain intersections of the line L with the x-axis and the xy-plane.)

In even greater generality, given a semisimple algebraic group G with a Borel subgroup B and a standard parabolic subgroup P, it is known that the homogeneous space X = G/P, which is an example of a flag variety, consists of finitely many B-orbits that may be parametrized by certain elements of the Weyl group W. The closure of the B-orbit associated to an element w of the Weyl group is denoted by Xw and is called a Schubert variety in G/P. The classical case corresponds to G = SLn and P being the kth maximal parabolic subgroup of G.