effectively unbreakable cryptosystem - Übersetzung nach russisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

effectively unbreakable cryptosystem - Übersetzung nach russisch

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

effectively unbreakable cryptosystem      
практически нераскрываемая криптосистема (вследствие неокупаемости затрат времени и средств на криптоанализ) практически нераскрываемая криптосистема (вследствие неокупаемости затрат времени и средств на криптоанализ)
unbreakable         
WIKIMEDIA DISAMBIGUATION PAGE
Unbreakable (album); Unbreakable (single); Unbreakable (song) (disambiguation); Unbreakable (song); Unbreakable (Album); Unbreakable (disambiguation)
unbreakable adj. неломкий, нехрупкий, небьющийся
unbreakable         
WIKIMEDIA DISAMBIGUATION PAGE
Unbreakable (album); Unbreakable (single); Unbreakable (song) (disambiguation); Unbreakable (song); Unbreakable (Album); Unbreakable (disambiguation)

[ʌn'breikəb(ə)l]

общая лексика

небьющийся

прилагательное

общая лексика

неломкий

нехрупкий

небьющийся

неломкий, нехрупкий, небьющийся

Definition

unbreakable
¦ adjective not liable to break or able to be broken.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Übersetzung von &#39effectively unbreakable cryptosystem&#39 in Russisch