prime factorization - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

prime factorization - Übersetzung nach russisch

DECOMPOSITION OF AN INTEGER INTO A PRODUCT
Prime factorization algorithm; Prime factorization; Prime factorisation; Prime decomposition; Integer factorization problem; Integer factorisation; Factoring problem; Integer factorization algorithms; Prime factorization algorithms; Prime Factorization; Integer factoring; Factor table; Factor tree; Factoring tree; Integer Factorization; Factoring integers; Integer factors; Algorithms for factoring integers; Factors of an integer

prime factorization         
разложение (больших чисел) на простые сомножители
prime factorization         

математика

разложение на простые множители

prime factors         
  • The [[Gaussian prime]]s with norm less than 500
  • The small gear in this piece of farm equipment has 13 teeth, a prime number, and the middle gear has 21, relatively prime to 13
  • alt=Construction of a regular pentagon using straightedge and compass
  • relative error]] of <math>\tfrac{n}{\log n}</math> and the logarithmic integral <math>\operatorname{Li}(n)</math> as approximations to the [[prime-counting function]]. Both relative errors decrease to zero as <math>n</math> grows, but the convergence to zero is much more rapid for the logarithmic integral.
  • alt=Demonstration, with Cuisenaire rods, that 7 is prime, because none of 2, 3, 4, 5, or 6 divide it evenly
  • alt=The Rhind Mathematical Papyrus
  • alt=Plot of the absolute values of the zeta function
  • alt=Animation of the sieve of Eratosthenes
  • The connected sum of two prime knots
  • alt=The Ulam spiral
POSITIVE INTEGER WITH EXACTLY TWO DIVISORS, 1 AND ITSELF
Primes; Prime numbers; Prime factor; Primality; Prime Numbers; Prime factors; Odd prime; 1 no longer prime; Prime divisor; Prime numbers in nature; Even primes; Prime Number; Infinity of primes; Prime-Numbers; Euclidean prime number theorem; Table Of Primes List; Prime; Primalities; Prime-number; Uncompound number; Odd prime number; Ω(n); Primality of 1; A000040; 1 is not a prime number; Prime (number); Primenumber; Primality of one; Infinity of the primes; Draft:The first mathematical of the prime numbers; Draft:Integer X prime matrix; Prime (mathematics)
простые сомножители, common factor - общий множитель

Definition

Простое число

целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге "Начал" Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп (См. Группа); в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел (См. Алгебраическое число) рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости - это привело к созданию понятия Идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч.

Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории (См. Чисел теория). Она ставится как изучение асимптотического поведения функции π(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что < π(x) < при любых x 2 [т. е., что π(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения π(х) к равен 1.

В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

(произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции - дзета-функции (См. Дзета-функция) ξ(s), определяемой при Res > 1 рядом

Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения ξ(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения ξ(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/2. Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой (См. Гольдбаха проблема), с не решенной ещё проблемой "близнецов" и другими проблемами аналитической теории чисел. Проблема "близнецов" состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших "близнецов" (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 -1 есть П. ч.; в нём 3376 цифр].

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. - Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Wikipedia

Integer factorization

In number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor).

When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing.

In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA modulus would take about 500 times as long.

Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are semiprimes, the product of two prime numbers. When they are both large, for instance more than two thousand bits long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by Fermat's factorization method), even the fastest prime factorization algorithms on the fastest computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any computer increases drastically.

Many cryptographic protocols are based on the difficulty of factoring large composite integers or a related problem—for example, the RSA problem. An algorithm that efficiently factors an arbitrary integer would render RSA-based public-key cryptography insecure.

Übersetzung von &#39prime factorization&#39 in Russisch