reciprocal number cryptosystem - Übersetzung nach russisch
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

reciprocal number cryptosystem - Übersetzung nach russisch

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

reciprocal number cryptosystem      
криптосистема на основе обратных чисел криптосистема на основе обратных чисел
dual basis         
BASIS ON A DUAL VECTOR SPACE CANONICALLY ASSOCIATED TO A BASIS ON THE ORIGINAL VECTOR SPACE
Reciprocal basis

математика

двойственный базис

reciprocal function         
  • Geometric intuition for the integral of 1/''x''. The three integrals from 1 to 2, from 2 to 4, and from 4 to 8 are all equal. Each region is the previous region halved vertically and doubled horizontally. Extending this, the integral from 1 to 2<sup>''k''</sup> is ''k'' times the integral from 1 to 2, just as ln 2<sup>''k''</sup> = ''k'' ln 2.
  • Graph of f(''x'') = ''x''<sup>''x''</sup> showing the minimum at (1/''e'', ''e''<sup>−1/''e''</sup>).
OF A NUMBER X, 1 DIVIDED BY X
Reciprocal function; Reciprocal (mathematics); 1/x; ⅟; Reciproc; Arithmetic inverse; X^-1; Reciprocal value

математика

обратная функция

Definition

ВЕЩЕСТВЕННОЕ ЧИСЛО
то же, что действительное число.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Übersetzung von &#39reciprocal number cryptosystem&#39 in Russisch