approximate algorithm - ορισμός. Τι είναι το approximate algorithm
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι approximate algorithm - ορισμός

COMPUTATIONAL METHOD USED TO ESTIMATE THE POSTERIOR DISTRIBUTIONS OF MODEL PARAMETERS
Approximate Bayesian Computation; Approximate bayesian computation; ABC inference

approximation algorithm         
CLASS OF ALGORITHMS THAT FIND APPROXIMATE SOLUTIONS TO OPTIMIZATION PROBLEMS
Approximation algorithms; Rho-approximation algorithm; Ρ-approximation algorithm; Relative performance guarantee; Absolute performance guarantee; Approximation ratio; R-approximation algorithm; Approximability; Approximate solutions to optimization problems
<algorithm> An algorithm for an optimisation problem that generates feasible but not necessarily optimal solutions. Unlike "heuristic", the term "approximation algorithm" often implies some proven worst or average case bound on performance. The terms are often used interchangeably however. (1997-10-28)
Approximation algorithm         
CLASS OF ALGORITHMS THAT FIND APPROXIMATE SOLUTIONS TO OPTIMIZATION PROBLEMS
Approximation algorithms; Rho-approximation algorithm; Ρ-approximation algorithm; Relative performance guarantee; Absolute performance guarantee; Approximation ratio; R-approximation algorithm; Approximability; Approximate solutions to optimization problems
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture.
Approximate string matching         
  • A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions"
ALGORITHM FOR FINDING STRINGS THAT MATCH A PATTERN APPROXIMATELY
Fuzzy string searching; Fuzzy search; Fuzzy searching; Fuzzy string matching; Fuzzy finder; Approximate substring matching; Approximately matching strings; Fzf; FZF
In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly). The problem of approximate string matching is typically divided into two sub-problems: finding approximate substring matches inside a given string and finding dictionary strings that match the pattern approximately.

Βικιπαίδεια

Approximate Bayesian computation

Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics that can be used to estimate the posterior distributions of model parameters.

In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate.

ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection.

ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences, e.g. in population genetics, ecology, epidemiology, systems biology, and in radio propagation.