Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT
Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
πώς χρησιμοποιείται η λέξη
συχνότητα χρήσης
χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
επιλογές μετάφρασης λέξεων
παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
ετυμολογία
Μετάφραση κειμένου με χρήση τεχνητής νοημοσύνης
Εισαγάγετε οποιοδήποτε κείμενο. Η μετάφραση θα γίνει με τεχνολογία τεχνητής νοημοσύνης.
Συζήτηση ρημάτων με τη βοήθεια της τεχνητής νοημοσύνης ChatGPT
Εισάγετε ένα ρήμα σε οποιαδήποτε γλώσσα. Το σύστημα θα εκδώσει έναν πίνακα συζήτησης του ρήματος σε όλες τις πιθανές χρόνους.
Αίτημα ελεύθερης μορφής στο ChatGPT τεχνητής νοημοσύνης
Εισαγάγετε οποιαδήποτε ερώτηση σε ελεύθερη μορφή σε οποιαδήποτε γλώσσα.
Μπορείτε να εισαγάγετε λεπτομερή ερωτήματα που αποτελούνται από πολλές προτάσεις. Για παράδειγμα:
Δώστε όσο το δυνατόν περισσότερες πληροφορίες σχετικά με την ιστορία της εξημέρωσης κατοικίδιων γατών. Πώς συνέβη που οι άνθρωποι άρχισαν να εξημερώνουν γάτες στην Ισπανία; Ποιες διάσημες ιστορικές προσωπικότητες από την ισπανική ιστορία είναι γνωστό ότι είναι ιδιοκτήτες οικόσιτων γατών; Ο ρόλος των γατών στη σύγχρονη ισπανική κοινωνία.
Commutative Algebra; History of commutative algebra; Commutative ring theory
Commutativealgebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutativealgebra.
Draft:Journal of Commutative Algebra; J. Commut. Algebra; J Commut Algebra
The Journal of CommutativeAlgebra is a peer-reviewed academic journal of mathematical research that specializes in commutativealgebra and closely related fields. It has been published by the Rocky Mountain Mathematics Consortium (RMMC) since its establishment in 2009.
Commutativealgebra is the branch of abstract algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutativealgebra.