elliptic cosine - ορισμός. Τι είναι το elliptic cosine
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι elliptic cosine - ορισμός

MATHEMATICAL FUNCTION
Elliptic functions (Jacobi); Jacobian elliptic functions; Jacobi elliptic function; Jacobian elliptic function; Jacobi Elliptic Function; Jacobi Sine Function; Jacobi's elliptic functions; Jacobi sine function; Jacobian function; Jacobi amplitude; Elliptic sine; Jacobi elliptic sine; Sn (elliptic function); Sinus amplitudinis; Elliptic cosine; Cn (elliptic function); Cosinus amplitudinis; Jacobi elliptic cosine; Delta amplitude; Dn (elliptic function); Delta amplitudinis; Jacobi delta amplitude; Ns (elliptic function); Nc (elliptic function); Nd (elliptic function); Sc (elliptic function); Sd (elliptic function); Dc (elliptic function); Ds (elliptic function); Cs (elliptic function); Cd (elliptic function); Pg (elliptic function); Inverse Jacobi elliptic functions; Arcsn; Arccn; Amplitude (Jacobi); Am (elliptic function); Arcdn
  • Plot of the degenerate Jacobi curve (''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup>/''b''<sup>2</sup>&nbsp;=&nbsp;1, ''b''&nbsp;=&nbsp;&infin;) and the twelve Jacobi Elliptic functions pq(''u'',1) for a particular value of angle&nbsp;''&phi;''.  The solid curve is the degenerate ellipse (''x''<sup>2</sup>&nbsp;=&nbsp;1) with ''m''&nbsp;=&nbsp;1 and ''u''&nbsp;=&nbsp;''F''(''&phi;'',1) where ''F''(&middot;,\middot') is the [[elliptic integral]] of the first kind. The dotted curve is the unit circle. Since these are the Jacobi functions for ''m''&nbsp;=&nbsp;0 (circular trigonometric functions) but with imaginary arguments, they correspond to the six hyperbolic trigonometric functions.
  • Plots of the phase for the twelve Jacobi Elliptic functions pq(u,m) as a function complex argument u, with poles and zeroes indicated. The plots are over one full cycle in the real and imaginary directions with the colored portion indicating phase according to the color wheel at the lower right (which replaces the trivial dd function). Regions with absolute value below 1/3 are colored black, roughly indicating the location of a zero, while regions with absolute value above 3 are colored white, roughly indicating the position of a pole. All plots use ''m''&nbsp;=&nbsp;2/3 with ''K''&nbsp;=&nbsp;''K''(''m''), ''K''&prime;&nbsp;=&nbsp;''K''(1&nbsp;−&nbsp;''m''), ''K''(&middot;) being the complete elliptic integral of the first kind. Arrows at the poles point in direction of zero phase. Right and left arrows imply positive and negative real residues respectively. Up and down arrows imply positive and negative imaginary residues respectively.
  • Plot of the Jacobi ellipse (''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup>/''b''<sup>2</sup>&nbsp;=&nbsp;1, ''b''&nbsp;real) and the twelve Jacobi elliptic functions ''pq''(''u'',''m'') for particular values of angle ''&phi;'' and  parameter&nbsp;''b''.  The solid curve is the ellipse, with  ''m''&nbsp;=&nbsp;1&nbsp;−&nbsp;1/''b''<sup>2</sup> and ''u''&nbsp;=&nbsp;''F''(''&phi;'',''m'') where ''F''(&middot;,&middot;) is the [[elliptic integral]] of the first kind (with parameter <math>m=k^2</math>). The dotted curve is the unit circle. Tangent lines from the circle and ellipse at ''x''&nbsp;=&nbsp;cd crossing the ''x''-axis at dc are shown in light grey.
  • Plot of the Jacobi hyperbola (''x''<sup>2</sup>&nbsp;+&nbsp;''y''<sup>2</sup>/''b''<sup>2</sup>&nbsp;=&nbsp;1, ''b'' imaginary) and the twelve Jacobi Elliptic functions pq(''u'',''m'') for particular values of angle ''&phi;'' and  parameter ''b''.  The solid curve is the hyperbola, with  ''m''&nbsp;=&nbsp;1&nbsp;−&nbsp;1/''b''<sup>2</sup> and ''u''&nbsp;=&nbsp;''F''(''&phi;'',''m'') where ''F''(&middot;,&middot;) is the [[elliptic integral]] of the first kind. The dotted curve is the unit circle. For the ds-dc triangle, ''&sigma;''&nbsp;=&nbsp; sin(''&phi;'')cos(''&phi;'').
  • Model of the Jacobi amplitude (measured along vertical axis) as a function of independent variables ''u'' and the modulus ''k''

Jacobi elliptic functions         
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters.
Lenstra elliptic-curve factorization         
ALGORITHM FOR INTEGER FACTORIZATION
Lenstra Elliptic Curve Factorization; Elliptic curve method; Elliptic curve factorization; Elliptic Curve Factorization Method; Elliptic curve factorization method; Elliptic curve factorisation; Lenstra elliptic curve factorization; Lenstra's ECM
The Lenstra elliptic-curve factorization or the elliptic-curve factorization method (ECM) is a fast, sub-exponential running time, algorithm for integer factorization, which employs elliptic curves. For general-purpose factoring, ECM is the third-fastest known factoring method.
COSINE         
  • none
  • none
  • none
  • none
  • none
  • none
  • Ottoman Turkey]] with axes for looking up the sine and [[versine]] of angles
  • The four quadrants of a Cartesian coordinate system
  • Sine function in blue and sine squared function in red.  The X axis is in radians.
  • sin(''z'') as a vector field
  • This animation shows how including more and more terms in the partial sum of its Taylor series approaches a sine curve.
  • The quadrants of the unit circle and of sin(''x''), using the [[Cartesian coordinate system]]
  • <math>\cos(\theta)</math> and <math>\sin(\theta)</math> are the real and imaginary parts of <math>e^{i\theta}</math>.
  • For the angle ''α'', the sine function gives the ratio of the length of the opposite side to the length of the hypotenuse.
  • Unit circle: a circle with radius one
TRIGONOMETRIC FUNCTIONS OF AN ANGLE
Cosine; Sine function; Sine squared; COSINE; SinX; Sine (trigonometric function); Cosine (trigonometric function); Sin x; Cosinus; Complex sine and cosine; Sin(x); Cos(x); Cosine function; Cosine of X; Sine of X; Sinx; Sinusoida; Sin(); Half chord; Complex sine; Sin z; Sin X; Vertical sine; Sinus rectus (mathematics); Sinus rectus (trigonometry); Sinus rectus (function); Sinus (trigonometry); Half-chord; Sinus rectus arcus; Sinus rectus primus; Sin (trigonometry); Cos (trigonometry); Sine (trigonometry); Sine (mathematics); Natural sine; Algorithms for calculating the sine function; S (trigonometry); Sin. (trigonometry); Draft:Sine and cosine; Sine; Sin and cos; Sinus and cosinus
Cooperation for Open Systems Interconnection Networking in Europe. A EUREKA project.

Βικιπαίδεια

Jacobi elliptic functions

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation sn {\displaystyle \operatorname {sn} } for sin {\displaystyle \sin } . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.