homotopy torus - ορισμός. Τι είναι το homotopy torus
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι homotopy torus - ορισμός

UNIVERSAL BUNDLE DEFINED ON A CLASSIFYING SPACE
Homotopy quotient; Homotopy orbit space

Torus mandibularis         
  • Torus mandibularis seen at axial CT and volume rendering.
BONY GROWTH IN THE MANDIBLE ALONG THE SURFACE NEAREST TO THE TONGUE
Mandibular tori; Torus Mandibularis; Mandibular torus; Tori mandibulares
Torus mandibularis is a bony growth in the mandible along the surface nearest to the tongue. Mandibular tori are usually present near the premolars and above the location of the mylohyoid muscle's attachment to the mandible.
Homotopy         
  • isotopy]].
CONTINUOUS DEFORMATION BETWEEN TWO CONTINUOUS MAPS
Homotopic; Homotopy equivalent; Homotopy equivalence; Homotopy invariant; Homotopy class; Null-homotopic; Homotopy type; Nullhomotopic; Homotopy invariance; Homotopy of maps; Homotopically equivalent; Homotopic maps; Homotopy of paths; Homotopical; Homotopy classes; Null-homotopy; Null homotopy; Nullhomotopic map; Null homotopic; Relative homotopy; Homotopy retract; Continuous deformation; Relative homotopy class; Homotopy-equivalent; Homotopy extension and lifting property; Isotopy (topology); Homotopies
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
Torus         
  • A stereographic projection of a [[Clifford torus]] in four dimensions performing a simple rotation through the ''xz''-plane
  • 160px
  • Seen in [[stereographic projection]], a 4D ''flat torus'' can be projected into 3-dimensions and rotated on a fixed axis.
  • 6 × 4 {{=}} 24}} [[quadrilateral]] faces
  • Turning a punctured torus inside-out
  • The configuration space of 2 not necessarily distinct points on the circle is the [[orbifold]] quotient of the 2-torus, '''T'''<sup>2</sup>/''S''<sub>2</sub>, which is the [[Möbius strip]].
  • (G♭-B♭)}} segment of the left edge.</small>
  • This construction shows the torus divided into seven regions, every one of which touches every other, meaning each must be assigned a unique color.
  • degenerates]] into a double-covered sphere.
  • Poloidal direction (red arrow) and<br>Toroidal direction (blue arrow)
  • {4,4}<sub>1,0</sub>]], constructed on the surface of a [[duocylinder]] with 1 vertex, 2 orthogonal edges, and one square face. It is seen here stereographically projected into 3-space as a torus.
  • In three dimensions, one can bend a rectangle into a torus, but doing this typically stretches the surface, as seen by the distortion of the checkered pattern.
  • 240px
DOUGHNUT-SHAPED SURFACE OF REVOLUTION
Doughnut shape; Two-torus; Hypertoroid; Toroidally; Torus (mathematics); Torus group; N-torus; Toral automorphism; Spindle torus; Standard torus; Horn torus; Ring torus; 2-torus; Standard tori; Donut shape; Tori (Mathematics); Doughnut topology; Thorus; Flat torus; Hypertorus; Toratope; 𝕋; Torus of revolution; Doughnut (shape)
·noun ·see 3d Tore, 2.
II. Torus ·noun The receptacle, or part of the flower on which the carpels stand.
III. Torus ·noun A lage molding used in the bases of columns. Its profile is semicircular. ·see ·Illust. of Molding.
IV. Torus ·noun One of the ventral parapodia of tubicolous annelids. It usually has the form of an oblong thickening or elevation of the integument with rows of uncini or hooks along the center. ·see ·Illust. under Tubicolae.

Βικιπαίδεια

Universal bundle

In mathematics, the universal bundle in the theory of fiber bundles with structure group a given topological group G, is a specific bundle over a classifying space BG, such that every bundle with the given structure group G over M is a pullback by means of a continuous map MBG.