jump equation - ορισμός. Τι είναι το jump equation
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι jump equation - ορισμός

CUT IN FILM EDITING IN WHICH TWO SEQUENTIAL SHOTS OF THE SAME SUBJECT GIVE THE IMPRESSION OF A JUMP FORWARD IN TIME
Jump-cut; Jump cuts; Jump cutting; Jump Cut; Jumpcut

Schrödinger equation         
  • [[Erwin Schrödinger]]
  • 1-dimensional potential energy box (or infinite potential well)
  • spring]], oscillates back and forth. (C–H) are six solutions to the Schrödinger Equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the [[wave function]]. [[Stationary state]]s, or energy eigenstates, which are solutions to the time-independent Schrödinger equation, are shown in C, D, E, F, but not G or H.
  • harmonic oscillator]]. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The [[probability distribution]] of finding the particle with this wave function at a given position. The top two rows are examples of '''[[stationary state]]s''', which correspond to [[standing wave]]s. The bottom row is an example of a state which is ''not'' a stationary state. The right column illustrates why stationary states are called "stationary".
  • 1=''V'' = 0}}. In other words, this corresponds to a particle traveling freely through empty space.
PARTIAL DIFFERENTIAL EQUATION DESCRIBING HOW THE QUANTUM STATE OF A NON-RELATIVISTIC PHYSICAL SYSTEM CHANGES WITH TIME
Schrodingers equation; Schroedinger's equation; Schroedinger equation; Schrödinger Wave Equation; Schrodinger's equation; Schrödinger wave equation; Schrödinger's equation; Schrödinger-equation; Schrödinger Equation; Schrödinger's wave equation; TDSE; Time-independent Schrödinger equation; Time-independent Schrodinger equation; Time-independent schrödinger equation; Time-independent schrodinger equation; Schrodinger Equation; Shrodinger equation; Shrodinger's equation; Schroedinger Equation; Sherdinger's equation; Shredinger's equation; Sherdinger equation; Shredinger equation; Schrodinger's wave equation; Schrodinger`s equation; Schrodiner`s equation; Erwin Schrodinger's wave model; Time independent Schrödinger equation; Schroedinger wave equation; Time-independent Schroedinger equation; Schrodinger Wave Equation; Schroedinger Wave Equation; Schroedinger's wave equation; Time independent Schroedinger equation; Schrodinger-equation; Time independent Schrodinger equation; Time-independent schroedinger equation; Schroedinger-equation; Schrodinger wave equation; Schrodinger equation; TISE; Schrodinger operator; Schrödinger’s equation; Schrodinger's Wave Equation; Schrödinger's Wave Equation; Schrodinger's Equation; Schrödinger's Equation; Schrodinger model; Schrödinger model; Non-Relativistic Schrodinger Wave Equation; Time-dependent Schrödinger equation; Schrodinger’s equation; Schrodenger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject.
Schrodinger equation         
  • [[Erwin Schrödinger]]
  • 1-dimensional potential energy box (or infinite potential well)
  • spring]], oscillates back and forth. (C–H) are six solutions to the Schrödinger Equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the [[wave function]]. [[Stationary state]]s, or energy eigenstates, which are solutions to the time-independent Schrödinger equation, are shown in C, D, E, F, but not G or H.
  • harmonic oscillator]]. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The [[probability distribution]] of finding the particle with this wave function at a given position. The top two rows are examples of '''[[stationary state]]s''', which correspond to [[standing wave]]s. The bottom row is an example of a state which is ''not'' a stationary state. The right column illustrates why stationary states are called "stationary".
  • 1=''V'' = 0}}. In other words, this corresponds to a particle traveling freely through empty space.
PARTIAL DIFFERENTIAL EQUATION DESCRIBING HOW THE QUANTUM STATE OF A NON-RELATIVISTIC PHYSICAL SYSTEM CHANGES WITH TIME
Schrodingers equation; Schroedinger's equation; Schroedinger equation; Schrödinger Wave Equation; Schrodinger's equation; Schrödinger wave equation; Schrödinger's equation; Schrödinger-equation; Schrödinger Equation; Schrödinger's wave equation; TDSE; Time-independent Schrödinger equation; Time-independent Schrodinger equation; Time-independent schrödinger equation; Time-independent schrodinger equation; Schrodinger Equation; Shrodinger equation; Shrodinger's equation; Schroedinger Equation; Sherdinger's equation; Shredinger's equation; Sherdinger equation; Shredinger equation; Schrodinger's wave equation; Schrodinger`s equation; Schrodiner`s equation; Erwin Schrodinger's wave model; Time independent Schrödinger equation; Schroedinger wave equation; Time-independent Schroedinger equation; Schrodinger Wave Equation; Schroedinger Wave Equation; Schroedinger's wave equation; Time independent Schroedinger equation; Schrodinger-equation; Time independent Schrodinger equation; Time-independent schroedinger equation; Schroedinger-equation; Schrodinger wave equation; Schrodinger equation; TISE; Schrodinger operator; Schrödinger’s equation; Schrodinger's Wave Equation; Schrödinger's Wave Equation; Schrodinger's Equation; Schrödinger's Equation; Schrodinger model; Schrödinger model; Non-Relativistic Schrodinger Wave Equation; Time-dependent Schrödinger equation; Schrodinger’s equation; Schrodenger equation
¦ noun Physics a differential equation which forms the basis of the quantum-mechanical description of a particle.
Origin
1920s: named after the Austrian physicist Erwin Schrodinger.
Richards equation         
NON-LINEAR PARTIAL DIFFERENTIAL EQUATION THAT REPRESENTS THE MOVEMENT OF WATER IN UNSATURATED SOILS
Richards' Equation; Richards' equation; Richards Equation; The Richards equation
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931.

Βικιπαίδεια

Jump cut

A jump cut is a cut in film editing in which a single continuous sequential shot of a subject is broken into two parts, with a piece of footage being removed in order to render the effect of jumping forward in time. Camera positions of the subject in the remaining pieces of footage of the sequence should vary only slightly in order to achieve the effect. It is a manipulation of temporal space using the duration of a single shot, and fracturing the duration to move the audience ahead. This kind of cut abruptly communicates the passing of time as opposed to the more seamless dissolve heavily used in films predating Jean-Luc Godard's Breathless, which made extensive use of jump cuts and popularized the technique during the 1960s. For this reason, jump cuts are considered a violation of classical continuity editing, which aims to give the appearance of continuous time and space in the story-world by de-emphasizing editing, but are sometimes nonetheless used for creative purposes. Jump cuts tend to draw attention to the constructed nature of the film. More than one jump cut is sometimes used in a single sequence.

Continuity editing uses a guideline called the "30-degree rule" to avoid the appearance of jump cuts. The 30-degree rule advises that for consecutive shots to appear seamless and continuous in time, the camera position must vary at least 30 degrees from its previous position. Some schools would call for a change in framing as well (e.g., from a medium shot to a close up). The idea is to convey to the viewer a different point of view on the action but with the timeline of the action being continuous. Generally, if the camera position changes less than 30 degrees, the difference between the two shots will not be substantial enough, and the viewer will experience the edit as a jump in the position of the subject rather than a change of point of view, which is jarring.

Jump cuts, on the other hand, keep the camera's relationship to the subject the same but jump forward in time in the action.

Although jump cuts can be created through the editing together of two shots filmed non-continuously (spatial jump cuts), they can also be created by removing a middle section of one continuously filmed shot (temporal jump cuts).

Jump cuts can add a sense of speed to the sequence of events.