juvenile appearance - ορισμός. Τι είναι το juvenile appearance
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι juvenile appearance - ορισμός

Active appearance models; Active Appearance Model

juvenile hormone         
  • all juvenile hormones
CLASS OF CHEMICAL COMPOUNDS
Neotenin; Juvenile hormones; Vitelogenic hormone; Juvenile hormone I; Juvenile hormone II; Juvenile hormone III
¦ noun Entomology a hormone regulating larval development in insects.
Juvenile hormone         
  • all juvenile hormones
CLASS OF CHEMICAL COMPOUNDS
Neotenin; Juvenile hormones; Vitelogenic hormone; Juvenile hormone I; Juvenile hormone II; Juvenile hormone III
Juvenile hormones (JHs) are a group of acyclic sesquiterpenoids that regulate many aspects of insect physiology. The first discovery of a JH was by Vincent Wigglesworth.
scrawny         
LOOK, OUTWARD PHENOTYPE
Looks; Physical appearance; Human appearance; Good looks; Personal appearance; Scrawny; Human phenotype; Human physical appearances
¦ adjective (scrawnier, scrawniest) unattractively thin and bony.
Derivatives
scrawniness noun
Origin
C19: var. of dialect scranny; cf. archaic scrannel 'weak, feeble' (referring to sound).

Βικιπαίδεια

Active appearance model

An active appearance model (AAM) is a computer vision algorithm for matching a statistical model of object shape and appearance to a new image. They are built during a training phase. A set of images, together with coordinates of landmarks that appear in all of the images, is provided to the training supervisor.

The model was first introduced by Edwards, Cootes and Taylor in the context of face analysis at the 3rd International Conference on Face and Gesture Recognition, 1998. Cootes, Edwards and Taylor further described the approach as a general method in computer vision at the European Conference on Computer Vision in the same year. The approach is widely used for matching and tracking faces and for medical image interpretation.

The algorithm uses the difference between the current estimate of appearance and the target image to drive an optimization process. By taking advantage of the least squares techniques, it can match to new images very swiftly.

It is related to the active shape model (ASM). One disadvantage of ASM is that it only uses shape constraints (together with some information about the image structure near the landmarks), and does not take advantage of all the available information – the texture across the target object. This can be modelled using an AAM.