minimal cut - ορισμός. Τι είναι το minimal cut
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι minimal cut - ορισμός

THEOREM IN OPTIMIZATION THEORY
Maximum flow minimum cut theorem; Max flow in networks; Maximum flow/minimum cut theorem; Max flow min cut theorem; Minimal cut; MFMC; Max-flow, mincut theorem; Maximum flow, minimum cut theorem; Max flow min cut; Maxflow-mincut; Min cut max flow; Max-flow min-cut; Max-flow-min-cut; Max-Flow Min-Cut theorem
  • Each black node denotes a pixel.
  • A network formulation of the project selection problem with the optimal solution

Max-flow min-cut theorem         
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e.
Minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
In phonology, minimal pairs are pairs of words or phrases in a particular language, spoken or signed, that differ in only one phonological element, such as a phoneme, toneme or chroneme, and have distinct meanings. They are used to demonstrate that two phones represent two separate phonemes in the language.
minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
n. (ling.) to produce; represent a minimal pair

Βικιπαίδεια

Max-flow min-cut theorem

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.