oblately spheroidal - ορισμός. Τι είναι το oblately spheroidal
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι oblately spheroidal - ορισμός

THREE-DIMENSIONAL ORTHOGONAL COORDINATE SYSTEM
Oblate spheroidal harmonics; Oblate spheroidal coordinate system
  • Figure 2: Plot of the oblate spheroidal coordinates μ and ν in the ''x''-''z'' plane, where φ is zero and ''a'' equals one. The curves of constant ''μ'' form red ellipses, whereas those of constant ''ν'' form cyan half-hyperbolae in this plane. The ''z''-axis runs vertically and separates the foci; the coordinates ''z'' and ν always have the same sign. The surfaces of constant μ and ν in three dimensions are obtained by rotation about the ''z''-axis, and are the red and blue surfaces, respectively, in Figure 1.
  • Figure 3: Coordinate isosurfaces for a point P (shown as a black sphere) in the alternative oblate spheroidal coordinates (σ, τ, φ). As before, the oblate spheroid corresponding to σ is shown in red, and φ measures the azimuthal angle between the green and yellow half-planes. However, the surface of constant τ is a full one-sheet hyperboloid, shown in blue. This produces a two-fold degeneracy, shown by the two black spheres located at (''x'', ''y'', ±''z'').
  • (1.09, −1.89, 1.66)}}.

Oblate spheroidal coordinates         
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e.
Oblate spheroidal wave function         
Wikipedia talk:Articles for creation/oblate spheroidal wave functions; Oblate spheroidal wave functions
In applied mathematics, oblate spheroidal wave functions (like also prolate spheroidal wave functions and other related functionsF.M.
Spheroidal wave function         
SOLUTIONS OF THE HELMHOLTZ EQUATION
Spheroidal harmonic
Spheroidal wave functions are solutions of the Helmholtz equation that are found by writing the equation in spheroidal coordinates and applying the technique of separation of variables, just like the use of spherical coordinates lead to spherical harmonics. They are called oblate spheroidal wave functions if oblate spheroidal coordinates are used and prolate spheroidal wave functions if prolate spheroidal coordinates are used.

Βικιπαίδεια

Oblate spheroidal coordinates

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius a {\displaystyle a} in the x-y plane. (Rotation about the other axis produces prolate spheroidal coordinates.) Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors, which contributed to the awarding of the 1926 Nobel Prize in Physics to Jean Baptiste Perrin. These friction factors determine the rotational diffusion of molecules, which affects the feasibility of many techniques such as protein NMR and from which the hydrodynamic volume and shape of molecules can be inferred. Oblate spheroidal coordinates are also useful in problems of electromagnetism (e.g., dielectric constant of charged oblate molecules), acoustics (e.g., scattering of sound through a circular hole), fluid dynamics (e.g., the flow of water through a firehose nozzle) and the diffusion of materials and heat (e.g., cooling of a red-hot coin in a water bath)