rotate$71140$ - ορισμός. Τι είναι το rotate$71140$
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι rotate$71140$ - ορισμός

SHIFT WHOSE LAST ENTRY MOVED TO FIRST PLACE (OR VICE VERSA)
Cyclic shift; Circular Shift; Cyclic Shift; ROtate Right; ROtate Left; Cyclic rotation; Bitwise rotate

rot13         
CAESAR CIPHER
Rot13; ROT-13; ROT-47; Rot47; Rot-13; Rot-47; ROT47; ROT 13; ROT26; Double ROT13; Ebg13; Memfrob; Furrfu; EBG13; Rot 13; ROT-26; 2ROT13; EbG13; Rot13.; Rotate by 13 places; R-O-T 13; EOT13; Rotate 13
/rot ther'teen/ [Usenet: from "rotate alphabet 13 places"], v. The simple Caesar-cypher encryption that replaces each English letter with the one 13 places forward or back along the alphabet, so that "The butler did it!" becomes "Gur ohgyre qvq vg!" Most Usenet news reading and posting programs include a rot13 feature. It is used to enclose the text in a sealed wrapper that the reader must choose to open - e.g. for posting things that might offend some readers, or spoilers. A major advantage of rot13 over rot(N) for other N is that it is self-inverse, so the same code can be used for encoding and decoding. [Jargon File]
furrfu         
CAESAR CIPHER
Rot13; ROT-13; ROT-47; Rot47; Rot-13; Rot-47; ROT47; ROT 13; ROT26; Double ROT13; Ebg13; Memfrob; Furrfu; EBG13; Rot 13; ROT-26; 2ROT13; EbG13; Rot13.; Rotate by 13 places; R-O-T 13; EOT13; Rotate 13
<jargon> Written-only rot13 "Sheesh!". "furrfu" evolved in mid-1992 as a response to postings repeating urban myths on newsgroup news:alt.folklore.urban, after some posters complained that "Sheesh!" as a response to newbies was being overused. (1995-10-25)
Circular shift         
In combinatorial mathematics, a circular shift is the operation of rearranging the entries in a tuple, either by moving the final entry to the first position, while shifting all other entries to the next position, or by performing the inverse operation. A circular shift is a special kind of cyclic permutation, which in turn is a special kind of permutation.

Βικιπαίδεια

Circular shift

In combinatorial mathematics, a circular shift is the operation of rearranging the entries in a tuple, either by moving the final entry to the first position, while shifting all other entries to the next position, or by performing the inverse operation. A circular shift is a special kind of cyclic permutation, which in turn is a special kind of permutation. Formally, a circular shift is a permutation σ of the n entries in the tuple such that either

σ ( i ) ( i + 1 ) {\displaystyle \sigma (i)\equiv (i+1)} modulo n, for all entries i = 1, ..., n

or

σ ( i ) ( i 1 ) {\displaystyle \sigma (i)\equiv (i-1)} modulo n, for all entries i = 1, ..., n.

The result of repeatedly applying circular shifts to a given tuple are also called the circular shifts of the tuple.

For example, repeatedly applying circular shifts to the four-tuple (a, b, c, d) successively gives

  • (d, a, b, c),
  • (c, d, a, b),
  • (b, c, d, a),
  • (a, b, c, d) (the original four-tuple),

and then the sequence repeats; this four-tuple therefore has four distinct circular shifts. However, not all n-tuples have n distinct circular shifts. For instance, the 4-tuple (a, b, a, b) only has 2 distinct circular shifts. The number of distinct circular shifts of an n-tuple is n k {\displaystyle {\frac {n}{k}}} , where k is a divisor of n, indicating the maximal number of repeats over all subpatterns.

In computer programming, a bitwise rotation, also known as a circular shift, is a bitwise operation that shifts all bits of its operand. Unlike an arithmetic shift, a circular shift does not preserve a number's sign bit or distinguish a floating-point number's exponent from its significand. Unlike a logical shift, the vacant bit positions are not filled in with zeros but are filled in with the bits that are shifted out of the sequence.