trihedron$517297$ - ορισμός. Τι είναι το trihedron$517297$
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι trihedron$517297$ - ορισμός

FORMULAS IN DIFFERENTIAL GEOMETRY
Binormal; Unit tangent vector; Frénet formulas; Frenet formulas; Frenet formula; Frenet's formulas; TNB frame; Frenet trihedron; Frenet frame; Seret-Frenet equations; Serret-Frenet equations; Frenet equations; Serret-Frenet formulas; Tangent-normal-binormal; Tangent-Normal-Binormal; Binormal vector; Frénet trihedron; Frenet-Serret; Frenet-Serret equations; Serret-Frenet formulae; Frenet-Serret formulae; Principal normal vector; Frenet-Serret frame; Frenet-Serret formulas; Rectifying plane; Frenet–Serret equations; Frenet–Serret frame; Frenet ribbon
  • A  ribbon defined by a curve of constant torsion and a highly oscillating curvature. The arc length parameterization of the curve was defined via integration of the Frenet–Serret equations.

Trihedron         
  • 240px
TESSELLATION OF LUNES ON A SPHERICAL SURFACE
Hosotope; Trihedron; Hosohedra; Digonal hosohedron; Trigonal hosohedron; Square hosohedron; Pentagonal hosohedron; Hexagonal hosohedron; Order-3 digonal tiling; Order-4 digonal tiling; Order-5 digonal tiling; Order-6 digonal tiling; Order-7 digonal tiling; Order-8 digonal tiling; Order-3 triangular hosohedral honeycomb; Order-4 triangular hosohedral honeycomb; Order-5 triangular hosohedral honeycomb; Order-2 triangular hosohedral honeycomb; Order-2 square hosohedral honeycomb; Order-3 square hosohedral honeycomb; Order-3 pentagonal hosohedral honeycomb; Order-2 pentagonal hosohedral honeycomb; Order-2 hexagonal hosohedral honeycomb; Order-2 heptagonal hosohedral honeycomb; Order-3-3 digonal honeycomb; Order-3-4 digonal honeycomb; Order-3-5 digonal honeycomb; Order-3-2 digonal honeycomb; Order-4-2 digonal honeycomb; Order-5-2 digonal honeycomb; Order-6-2 digonal honeycomb; Order-7-2 digonal honeycomb; Order-8-2 digonal honeycomb; Order-4-3 digonal honeycomb; Order-5-3 digonal honeycomb; Order-1 digonal tiling
·noun A figure having three sides.
trihedron         
  • 240px
TESSELLATION OF LUNES ON A SPHERICAL SURFACE
Hosotope; Trihedron; Hosohedra; Digonal hosohedron; Trigonal hosohedron; Square hosohedron; Pentagonal hosohedron; Hexagonal hosohedron; Order-3 digonal tiling; Order-4 digonal tiling; Order-5 digonal tiling; Order-6 digonal tiling; Order-7 digonal tiling; Order-8 digonal tiling; Order-3 triangular hosohedral honeycomb; Order-4 triangular hosohedral honeycomb; Order-5 triangular hosohedral honeycomb; Order-2 triangular hosohedral honeycomb; Order-2 square hosohedral honeycomb; Order-3 square hosohedral honeycomb; Order-3 pentagonal hosohedral honeycomb; Order-2 pentagonal hosohedral honeycomb; Order-2 hexagonal hosohedral honeycomb; Order-2 heptagonal hosohedral honeycomb; Order-3-3 digonal honeycomb; Order-3-4 digonal honeycomb; Order-3-5 digonal honeycomb; Order-3-2 digonal honeycomb; Order-4-2 digonal honeycomb; Order-5-2 digonal honeycomb; Order-6-2 digonal honeycomb; Order-7-2 digonal honeycomb; Order-8-2 digonal honeycomb; Order-4-3 digonal honeycomb; Order-5-3 digonal honeycomb; Order-1 digonal tiling
[tr??'hi:dr?n, -'h?dr?n]
¦ noun (plural trihedra -dr? or trihedrons) a solid figure having three sides or faces (in addition to the base or ends).
Derivatives
trihedral adjective &noun
Origin
C19 (earlier (C18) as trihedral): from tri- + -hedron.

Βικιπαίδεια

Frenet–Serret formulas

In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space R 3 {\displaystyle \mathbb {R} ^{3}} , or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called tangent, normal, and binormal unit vectors in terms of each other. The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret, in 1851. Vector notation and linear algebra currently used to write these formulas were not yet available at the time of their discovery.

The tangent, normal, and binormal unit vectors, often called T, N, and B, or collectively the Frenet–Serret frame or TNB frame, together form an orthonormal basis spanning R 3 {\displaystyle \mathbb {R} ^{3}} and are defined as follows:

  • T is the unit vector tangent to the curve, pointing in the direction of motion.
  • N is the normal unit vector, the derivative of T with respect to the arclength parameter of the curve, divided by its length.
  • B is the binormal unit vector, the cross product of T and N.

The Frenet–Serret formulas are:

d T d s = κ N , d N d s = κ T + τ B , d B d s = τ N , {\displaystyle {\begin{aligned}{\frac {\mathrm {d} \mathbf {T} }{\mathrm {d} s}}&=\kappa \mathbf {N} ,\\{\frac {\mathrm {d} \mathbf {N} }{\mathrm {d} s}}&=-\kappa \mathbf {T} +\tau \mathbf {B} ,\\{\frac {\mathrm {d} \mathbf {B} }{\mathrm {d} s}}&=-\tau \mathbf {N} ,\end{aligned}}}

where d/ds is the derivative with respect to arclength, κ is the curvature, and τ is the torsion of the curve. The two scalars κ and τ effectively define the curvature and torsion of a space curve. The associated collection, T, N, B, κ, and τ, is called the Frenet–Serret apparatus. Intuitively, curvature measures the failure of a curve to be a straight line, while torsion measures the failure of a curve to be planar.