diagonal expansion - translation to ελληνικό
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

diagonal expansion - translation to ελληνικό

Diagonal mapping; Diagonal map; Diagonal morphisms

diagonal expansion      
διαγώνια επέκταση
wire cutters         
  • Diagonal pliers with uninsulated handles.
CUTTING TOOL
Dyke (technical); Dikes (tool); Side cutter; Wire cutter; Wire cutters; Wirecutter; Wirecutters; Diagonal cutters; Diagonal cutter; Wire snips; Diagonal cutting pliers; Side cutters; Wire clipper
n. συρματοκόπτης
διαγώνια επέκταση      
diagonal expansion

Βικιπαίδεια

Diagonal morphism

In category theory, a branch of mathematics, for any object a {\displaystyle a} in any category C {\displaystyle {\mathcal {C}}} where the product a × a {\displaystyle a\times a} exists, there exists the diagonal morphism

δ a : a a × a {\displaystyle \delta _{a}:a\rightarrow a\times a}

satisfying

π k δ a = id a {\displaystyle \pi _{k}\circ \delta _{a}=\operatorname {id} _{a}} for k { 1 , 2 } , {\displaystyle k\in \{1,2\},}

where π k {\displaystyle \pi _{k}} is the canonical projection morphism to the k {\displaystyle k} -th component. The existence of this morphism is a consequence of the universal property that characterizes the product (up to isomorphism). The restriction to binary products here is for ease of notation; diagonal morphisms exist similarly for arbitrary products. The image of a diagonal morphism in the category of sets, as a subset of the Cartesian product, is a relation on the domain, namely equality.

For concrete categories, the diagonal morphism can be simply described by its action on elements x {\displaystyle x} of the object a {\displaystyle a} . Namely, δ a ( x ) = x , x {\displaystyle \delta _{a}(x)=\langle x,x\rangle } , the ordered pair formed from x {\displaystyle x} . The reason for the name is that the image of such a diagonal morphism is diagonal (whenever it makes sense), for example the image of the diagonal morphism R R 2 {\displaystyle \mathbb {R} \rightarrow \mathbb {R} ^{2}} on the real line is given by the line that is the graph of the equation y = x {\displaystyle y=x} . The diagonal morphism into the infinite product X {\displaystyle X^{\infty }} may provide an injection into the space of sequences valued in X {\displaystyle X} ; each element maps to the constant sequence at that element. However, most notions of sequence spaces have convergence restrictions that the image of the diagonal map will fail to satisfy.