morphological$50422$ - translation to ελληνικό
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

morphological$50422$ - translation to ελληνικό

THEORY AND TECHNIQUE FOR THE ANALYSIS AND PROCESSING OF GEOMETRICAL STRUCTURES
Morphological image processing; Morphological Image Processing; Mathematical Morphology; Morphological operations
  • The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas.
  • The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners.
  • A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.
  • The erosion of the dark-blue square by a disk, resulting in the light-blue square.
  • The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners.
  • Watershed of the gradient of the cardiac image

morphological      
adj. μορφολογικός

Ορισμός

Morphologist
·noun One who is versed in the science of morphology.

Βικιπαίδεια

Mathematical morphology

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

Topological and geometrical continuous-space concepts such as size, shape, convexity, connectivity, and geodesic distance, were introduced by MM on both continuous and discrete spaces. MM is also the foundation of morphological image processing, which consists of a set of operators that transform images according to the above characterizations.

The basic morphological operators are erosion, dilation, opening and closing.

MM was originally developed for binary images, and was later extended to grayscale functions and images. The subsequent generalization to complete lattices is widely accepted today as MM's theoretical foundation.