расположены в виде кольца - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

расположены в виде кольца - translation to Αγγλικά

КОМПЬЮТЕРНАЯ ИГРА 2009 ГОДА
Облачно, возможны осадки в виде фрикаделек (игра)

расположены в виде кольца      

• A compound in which six carbons are arranged in a ring ...

в наши дни         
В наши дни

• Our compasses today depend upon the same forces.

не в фокусе         
Не в фокусе (альбом)

• The teloblast lies deep and is out of focus.


• An out-of-focus photograph ...

Ορισμός

Ньютона кольца

интерференционные Полосы равной толщины в форме колец, расположенные концентрически вокруг точки касания двух поверхностей (двух сфер, плоскости и сферы и т.д.). Впервые описаны в 1675 И. Ньютоном. Интерференция света происходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся тела; этот зазор играет роль тонкой плёнки, см. Оптика тонких слоев (См. Оптика тонких слоёв). Н. к. наблюдаются и в проходящем и - более отчётливо - в отражённом свете. При освещении монохроматическим светом (См. Монохроматический свет) длины волны Л, Н. к. представляют собой чередующиеся тёмные и светлые полосы. Светлые возникают в местах, где зазор вносит Разность хода между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равную целому числу λ. Тёмные кольца образуются там, где разность хода лучей равна целому нечётному числу λ/2. Разность хода определяется оптической длиной пути (См. Оптическая длина пути) луча в зазоре и изменением фазы световой волны при отражении (см. Отражение света). Так, при отражении от границы воздух - стекло фаза меняется на π, а при отражении от границы стекло - воздух остаётся неизменной. Поэтому в случае двух стеклянных поверхностей т-е тёмное Н. к. в отражённом свете соответствует разности хода (т. е. толщине зазора dm = mλ/2), где m - целое число. При касании сферы и плоскости (рис. 1) rm = (mλR)1/2. По теореме Пифагора, для треугольников с катетами rп и rm R2 = (R - λm/2)2 + rn2 и R2 = (R - λm/2)2 + r2m, откуда следует - в пренебрежении очень малыми членами (/2)2 и (/2)2 и др.- часто используемая формула для Н. к.: R = (rn2 - r2m)/λ(n - m). Эти соотношения позволяют с хорошей точностью определять λ по измеренным rm и rп либо, если λ известна, измерять радиусы поверхностей линз (рис. 2). Н. к. используются также для контроля правильности формы сферических и плоских поверхностей (рис. 3). При освещении немонохроматическим (например, белым) светом Н. к. становятся цветными, причём чередование цветов в них существенно отличается от обычного радужного из-за переналожения систем колец, соответствующих разным т. Наиболее отчётливо Н. к. наблюдаются при использовании сферических поверхностей малых радиусов кривизны (толщина зазора мала на большем расстоянии от точки касания).

Лит.: Шишловский А. А., Прикладная физическая оптика, М., 1961; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965.

А. П. Гагарин.

Рис. 1. К выводу соотношения между радиусами rm колец Ньютона в отражённом свете, радиусом R сферической линзы и длиной волны λ освещающего монохроматического света. О - точка касания сферы и плоскости; АА' = δm - толщина воздушного зазора в области образования m-го тёмного кольца. Применяя теорему Пифагора к прямоугольному треугольнику, малый катет (равный rm) которого составляет перпендикуляр, опущенный из A' на СО, получим rm = R2 - (R - δm)2 ≈ 2Rδm, откуда условие δm = λm/2 даёт .

Рис. 2. Фотография колец Ньютона в отражённом свете.

Рис. 3. Кольца Ньютона, полученные с посеребрёнными поверхностями. Извилины полос выявляют дефекты поверхностей.

Βικιπαίδεια

Cloudy With a Chance of Meatballs

Cloudy With a Chance of Meatballs — видеоигра, базирующаяся на одноимённом фильме, который в свою очередь базируется на одноимённой детской книге, выпущенной в 1978 году. В игре игрок управляет Флинтом Локвудом, главным героем фильма, который должен спасти свой город и мир от дождей с едой, сражаться с чрезвычайно мутировавшими врагами и использовать различные гаджеты, чтобы помочь себе на пути.

Μετάφραση του &#39расположены в виде кольца&#39 σε Αγγλικά