Karnaugh map - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Karnaugh map - translation to ρωσικά

METHOD TO SIMPLIFY BOOLEAN ALGEBRA EXPRESSIONS; REFINEMENT OF EDWARD VEITCH'S 1952 VEITCH DIAGRAM
Karnaugh diagram; Karnaugh table; K-map; Karnaugh Map; K map; Kmap; Karnaugh maps; Veitch diagram; K Map; Minterm table; Marquand diagram; Kv-diagram; K maps; K-maps; Karnaugh diagrams; Karnaugh mapping; Map K; Karnaugh Maps; KV diagram; KVS diagram; K diagram; KV-diagram; KVS-diagram; K-diagram; Karnaugh-Veitch diagram; Karnaugh-Veitch map; Karnaugh chart; Karnaugh board; Karnaugh plan; Marquand chart; Marquand map; Veitch chart; Karnaugh–Veitch diagram; Veitch-Karnaugh map; KV map; Karnaugh-Veitch symmetry map; KVS map; KV-map; KVS-map; Veitch-Karnaugh diagram; Karnaugh-Veitch symmetry diagram; Marquand-Veitch diagram; Marquand–Veitch diagram; K-Map; Veitch–Karnaugh map; V-diagram; V-Diagram; V diagram; V Diagram; Diagram V; Diagram K; Karnaugh map method; Karnaugh–Veitch map; Symmetry diagram; Karnaugh–Veitch symmetry diagram; Marquand mapping; Conventional Karnaugh map; Gray Code map; Reflection map (logic optimization); Overlay K-map; Overlay Karnaugh map; Logic map; American style Karnaugh map; European style Karnaugh map; American-style Karnaugh map; European-style Karnaugh map; 1-variable Karnaugh map; 2-variable Karnaugh map; 3-variable Karnaugh map; 4-variable Karnaugh map; 5-variable Karnaugh map; 6-variable Karnaugh map; 7-variable Karnaugh map; 8-variable Karnaugh map; One-variable Karnaugh map; Two-variable Karnaugh map; Three-variable Karnaugh map; Four-variable Karnaugh map; Five-variable Karnaugh map; Six-variable Karnaugh map; Seven-variable Karnaugh map; Eight-variable Karnaugh map; 1-variable K-map; 2-variable K-map; 3-variable K-map; 4-variable K-map; 5-variable K-map; 6-variable K-map; 7-variable K-map; 8-variable K-map; One-variable K-map; Two-variable K-map; Three-variable K-map; Four-variable K-map; Five-variable K-map; Six-variable K-map; Seven-variable K-map; Eight-variable K-map; 1-input Karnaugh map; 2-input Karnaugh map; 3-input Karnaugh map; 4-input Karnaugh map; 5-input Karnaugh map; 6-input Karnaugh map; 7-input Karnaugh map; 8-input Karnaugh map; One-input Karnaugh map; Two-input Karnaugh map; Three-input Karnaugh map; Four-input Karnaugh map; Five-input Karnaugh map; Six-input Karnaugh map; Seven-input Karnaugh map; Eight-input Karnaugh map; 1-input K-map; 2-input K-map; 3-input K-map; 4-input K-map; 5-input K-map; 6-input K-map; 7-input K-map; 8-input K-map; One-input K-map; Two-input K-map; Three-input K-map; Four-input K-map; Five-input K-map; Six-input K-map; Seven-input K-map; Eight-input K-map; Standard Karnaugh map; Standard K-map; Conventional K-map; K-map plotting; K-map reading; K-map labeling; K-map labelling; Svoboda chart
  • Diagram showing two K-maps. The K-map for the function f(A, B, C, D) is shown as colored rectangles which correspond to minterms. The brown region is an overlap of the red 2×2 square and the green 4×1 rectangle. The K-map for the inverse of f is shown as gray rectangles, which correspond to maxterms.
  • Race hazards are present in this diagram.
  • An example Karnaugh map. This image actually shows two Karnaugh maps: for the function ''ƒ'', using [[minterm]]s (colored rectangles) and for its complement, using [[maxterm]]s (gray rectangles). In the image, ''E''() signifies a sum of minterms, denoted in the article as <math>\sum m_i</math>.
  • Above diagram with consensus terms added to avoid race hazards.
  • f(A,B,C,D)}} for ''ABCD'' = 1111 is replaced by a "don't care". This removes the green term completely and allows the red term to be larger. It also allows blue inverse term to shift and become larger
  • K-map construction. Instead of the output values (the rightmost values in the truth table), this diagram shows a decimal representation of the input ABCD (the leftmost values in the truth table), therefore it is not a Karnaugh map.

Karnaugh map         

вычислительная техника

карта Карно

symmetry diagram         

математика

диаграмма симметрии

.MAP         
COMPUTER FILE TYPE
.map

общая лексика

Linker Map

файл карты памяти

распределение памяти после компоновки

Map

ASCII-файл, используемый для онлайновых изображений карт в Web

Βικιπαίδεια

Karnaugh map

The Karnaugh map (KM or K-map) is a method of simplifying Boolean algebra expressions. Maurice Karnaugh introduced it in 1953 as a refinement of Edward W. Veitch's 1952 Veitch chart, which was a rediscovery of Allan Marquand's 1881 logical diagram aka Marquand diagram but with a focus now set on its utility for switching circuits. Veitch charts are also known as Marquand–Veitch diagrams or, rarely, as Svoboda charts, and Karnaugh maps as Karnaugh–Veitch maps (KV maps).

The Karnaugh map reduces the need for extensive calculations by taking advantage of humans' pattern-recognition capability. It also permits the rapid identification and elimination of potential race conditions.

The required Boolean results are transferred from a truth table onto a two-dimensional grid where, in Karnaugh maps, the cells are ordered in Gray code, and each cell position represents one combination of input conditions. Cells are also known as minterms, while each cell value represents the corresponding output value of the boolean function. Optimal groups of 1s or 0s are identified, which represent the terms of a canonical form of the logic in the original truth table. These terms can be used to write a minimal Boolean expression representing the required logic.

Karnaugh maps are used to simplify real-world logic requirements so that they can be implemented using a minimum number of logic gates. A sum-of-products expression (SOP) can always be implemented using AND gates feeding into an OR gate, and a product-of-sums expression (POS) leads to OR gates feeding an AND gate. The POS expression gives a complement of the function (if F is the function so its complement will be F'). Karnaugh maps can also be used to simplify logic expressions in software design. Boolean conditions, as used for example in conditional statements, can get very complicated, which makes the code difficult to read and to maintain. Once minimised, canonical sum-of-products and product-of-sums expressions can be implemented directly using AND and OR logic operators.

Μετάφραση του &#39Karnaugh map&#39 σε Ρωσικά