bounded acceptor - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

bounded acceptor - translation to ρωσικά

FUNCTION OR SEQUENCE WHOSE POSSIBLE VALUES FORM A BOUNDED SET
Bounded sequence; Bounded measure; Bounded sequences; Bounded map; Unbound function; Unbounded function; Bounded (function)

bounded acceptor      

математика

ограниченный акцептор

bounded operator         
LINEAR TRANSFORMATION L BETWEEN NORMED VECTOR SPACES X AND Y FOR WHICH THE RATIO OF THE NORM OF L(V) TO THAT OF V IS BOUNDED BY THE SAME NUMBER, OVER ALL NON-ZERO VECTORS V IN X
Bounded linear map; Bounded linear operator; Continuous operator; Bounded linear function; Bounded operators; Bounded linear functional; Bounded linear transform; Bounded Linear Form; Bonded linear operator

математика

ограниченный оператор

bounded quantification         
Bounded polymorphism; Bounded genericity; Bounded generics; Bounded generic; F-bounded quantification; Recursively bounded quantification; Recursively bounded polymorphism; F-bounded polymorphism; F-bounded genericity; Recursively bounded genericity; F-bounded; F-bound; Constrained genericity; Constraint genericity; Constrained polymorphism; Constraint polymorphism; Constrained quantification; Constraint quantification

математика

ограниченная квантификация

Ορισμός

Acceptor
·noun One who accepts.
II. Acceptor ·noun one who accepts an order or a bill of exchange; a drawee after he has accepted.

Βικιπαίδεια

Bounded function

In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number M such that

| f ( x ) | M {\displaystyle |f(x)|\leq M}

for all x in X. A function that is not bounded is said to be unbounded.

If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below.

An important special case is a bounded sequence, where X is taken to be the set N of natural numbers. Thus a sequence f = (a0, a1, a2, ...) is bounded if there exists a real number M such that

| a n | M {\displaystyle |a_{n}|\leq M}

for every natural number n. The set of all bounded sequences forms the sequence space l {\displaystyle l^{\infty }} .

The definition of boundedness can be generalized to functions f : X → Y taking values in a more general space Y by requiring that the image f(X) is a bounded set in Y.

Μετάφραση του &#39bounded acceptor&#39 σε Ρωσικά