extraplanetary - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

extraplanetary - translation to ρωσικά

TECHNOLOGY THAT ENABLES CAPTURING AND WIRELESS SENDING OF SOLAR ENERGY TO EARTH
Solar power satellite; Solar Power Satellite; Orbital power satellite; Space Solar Power System; Solar power satellites; Powersat; Satellite solar power; Lunar solar power system; Lunar solar power station; Lunar solar power; Extraplanetary solar power; Solar satellite power; Satellite Solar Power System; Solar satellite; Space solar power; Space based solar power; Space-based solar energy; Space Solar Power; Space solar-power; Satellite solar power station; Space solar plant; Space solar plants; Astroelectricity; Solar power on the Moon; SSPIDR; Space Solar Power Incremental Demonstrations and Research Project; Orbital Solar Power
  • Comparison of laser and microwave power transmission. NASA diagram
  • 0}} above the Earth's surface. NASA 1976
  • NASA Integrated Symmetrical Concentrator SPS concept
  • SERT Integrated Symmetrical Concentrator SPS concept.NASA
  • A laser pilot beam guides the microwave power transmission to a rectenna

extraplanetary      

общая лексика

внепланетный

Βικιπαίδεια

Space-based solar power

Space-based solar power (SBSP, SSP) is the concept of collecting solar power in outer space by solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection and absorption by the atmosphere, the possibility of very little night, and a better ability to orient to face the sun. Space-based solar power systems convert sunlight to some other form of energy (such as microwaves) which can be transmitted through the atmosphere to receivers on the Earth's surface.

Various SBSP proposals have been researched since the early 1970s, but none is economically viable with present-day space launch costs. Some technologists speculate that this may change in the distant future with space manufacturing from asteroids or lunar material, or with radical new space launch technologies other than rocketry.

Besides cost, SBSP also introduces several technological hurdles, including the problem of transmitting energy from orbit. Since wires extending from Earth's surface to an orbiting satellite are not feasible with current technology, SBSP designs generally include the wireless power transmission with its concomitant conversion inefficiencies, as well as land use concerns for antenna stations to receive the energy at Earth's surface. The collecting satellite would convert solar energy into electrical energy, powering a microwave transmitter or laser emitter, and transmit this energy to a collector (or microwave rectenna) on Earth's surface. Contrary to appearances in fiction, most designs propose beam energy densities that are not harmful if human beings were to be inadvertently exposed, such as if a transmitting satellite's beam were to wander off-course. But the necessarily vast size of the receiving antennas would still require large blocks of land near the end users. The service life of space-based collectors in the face of long-term exposure to the space environment, including degradation from radiation and micrometeoroid damage, could also become a concern for SBSP.

As of 2020, SBSP is being actively pursued by Japan, China, Russia, India, the United Kingdom and the US.

In 2008, Japan passed its Basic Space Law which established space solar power as a national goal and JAXA has a roadmap to commercial SBSP.

In 2015, the China Academy for Space Technology (CAST) showcased their roadmap at the International Space Development Conference. In February 2019, Science and Technology Daily (科技日报, Keji Ribao), the official newspaper of the Ministry of Science and Technology of the People's Republic of China, reported that construction of a testing base had started in Chongqing's Bishan District. CAST vice-president Li Ming was quoted as saying China expects to be the first nation to build a working space solar power station with practical value. Chinese scientists were reported as planning to launch several small- and medium-sized space power stations between 2021 and 2025. In December 2019, Xinhua News Agency reported that China plans to launch a 200-tonne SBSP station capable of generating megawatts (MW) of electricity to Earth by 2035.

In May 2020, the US Naval Research Laboratory conducted its first test of solar power generation in a satellite. In August 2021, the California Institute of Technology (Caltech) announced that it planned to launch a SBSP test array by 2023, and at the same time revealed that Donald Bren and his wife Brigitte, both Caltech trustees, had been since 2013 funding the institute's Space-based Solar Power Project, donating over $100 million.

Μετάφραση του &#39extraplanetary&#39 σε Ρωσικά