fundamental expansion - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

fundamental expansion - translation to ρωσικά

THEOREM IN BOOLEAN ALGEBRA
Shannon's expansion theorem; Shannon cofactor; Shannon's Expansion Theorem; Shannon expansion; Shannon decomposition; Shannon's expansion; Fundamental theorem of Boolean algebra; Boole's expansion; Boole expansion; Boole–Shannon expansion; Boole-Shannon expansion

fundamental expansion      

математика

фундаментальное разложение (автомата)

fundament         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)

['fʌndəmənt]

существительное

общая лексика

зад

ягодицы

физико-географическая характеристика (региона)

зад, ягодицы

fundament         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
fundament noun зад, ягодицы

Ορισμός

fundamental
I. a.
Essential, primary, indispensable, radical, constitutional, organic, most important, principal.
II. n.
Leading principle, essential part, essential principle.

Βικιπαίδεια

Boole's expansion theorem

Boole's expansion theorem, often referred to as the Shannon expansion or decomposition, is the identity: F = x F x + x F x {\displaystyle F=x\cdot F_{x}+x'\cdot F_{x'}} , where F {\displaystyle F} is any Boolean function, x {\displaystyle x} is a variable, x {\displaystyle x'} is the complement of x {\displaystyle x} , and F x {\displaystyle F_{x}} and F x {\displaystyle F_{x'}} are F {\displaystyle F} with the argument x {\displaystyle x} set equal to 1 {\displaystyle 1} and to 0 {\displaystyle 0} respectively.

The terms F x {\displaystyle F_{x}} and F x {\displaystyle F_{x'}} are sometimes called the positive and negative Shannon cofactors, respectively, of F {\displaystyle F} with respect to x {\displaystyle x} . These are functions, computed by restrict operator, restrict ( F , x , 0 ) {\displaystyle \operatorname {restrict} (F,x,0)} and restrict ( F , x , 1 ) {\displaystyle \operatorname {restrict} (F,x,1)} (see valuation (logic) and partial application).

It has been called the "fundamental theorem of Boolean algebra". Besides its theoretical importance, it paved the way for binary decision diagrams (BDDs), satisfiability solvers, and many other techniques relevant to computer engineering and formal verification of digital circuits. In such engineering contexts (especially in BDDs), the expansion is interpreted as a if-then-else, with the variable x {\displaystyle x} being the condition and the cofactors being the branches ( F x {\displaystyle F_{x}} when x {\displaystyle x} is true and respectively F x {\displaystyle F_{x'}} when x {\displaystyle x} is false).

Μετάφραση του &#39fundamental expansion&#39 σε Ρωσικά