homotopy axiom - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

homotopy axiom - translation to ρωσικά

PROPERTIES THAT HOMOLOGY THEORIES OF TOPOLOGICAL SPACES HAVE IN COMMON
Dimension axiom; Steenrod-Eilenberg Axioms; Steenrod-Eilenberg axioms; Eilenberg-Steenrod axioms; Homotopy axiom

homotopy axiom         

математика

аксиома гомотопии

covering homotopy         
  • center
IN ALGEBRAIC TOPOLOGY
Covering homotopy; Covering homotopy axiom

математика

накрывающая гомотопия

finite axiomatization         
A FORMULA IN THE METALANGUAGE OF AN AXIOMATIC SYSTEM IN WHICH ONE OR MORE SCHEMATIC VARIABLES APPEAR
Axiom scheme; Axiom schemata; Axiom-scheme; Finite axiomatization

математика

конечная аксиоматизация

Ορισμός

Axiom of Comprehension
<mathematics> An axiom schema of set theory which states: if P(x) is a property then x : P is a set. I.e. all the things with some property form a set. Acceptance of this axiom leads to Russell's Paradox which is why Zermelo set theory replaces it with a restricted form. (1995-03-31)

Βικιπαίδεια

Eilenberg–Steenrod axioms

In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.

One can define a homology theory as a sequence of functors satisfying the Eilenberg–Steenrod axioms. The axiomatic approach, which was developed in 1945, allows one to prove results, such as the Mayer–Vietoris sequence, that are common to all homology theories satisfying the axioms.

If one omits the dimension axiom (described below), then the remaining axioms define what is called an extraordinary homology theory. Extraordinary cohomology theories first arose in K-theory and cobordism.

Μετάφραση του &#39homotopy axiom&#39 σε Ρωσικά