knot manifold - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

knot manifold - translation to ρωσικά

TOPOLOGICAL SPACE THAT AT EACH POINT RESEMBLES EUCLIDEAN SPACE (UNSPECIFIED TYPE)
ManiFold; Manifold with boundary; Manifolds; Boundary of a manifold; Manifold (mathematics); Manifold/rewrite; Pure manifold; Abstract manifold; Abstract Manifold; Manifold/old2; Manifold theory; Manifold (topology); Real manifold; Manifold (Mathematics); Manifold (geometry); 0-manifold; Manifolds with boundary; Two-dimensional manifold; Manifold with corners; Maximal Atlas; Interior of a manifold; Maximal atlas; Manifolds-with-boundary; Manifold-with-boundary
  • Figure 2: A circle manifold chart based on slope, covering all but one point of the circle.
  • Figure 1: The four charts each map part of the circle to an open interval, and together cover the whole circle.
  • #009246}} cubic.
  • The [[Klein bottle]] immersed in three-dimensional space
  • Möbius strip
  • immersion]] used in [[sphere eversion]]
  • North]] and [[South Pole]]s.
  • A finite cylinder is a manifold with boundary.
  • The chart maps the part of the sphere with positive ''z'' coordinate to a disc.
  • 3D color plot of the [[spherical harmonics]] of degree <math>n = 5</math>

knot manifold      

математика

узловое многообразие

reef knot         
TYPE OF KNOT
Reef Knot; Reef (knot); Hercules knot; Knot of Hercules; Herculean knot

['ri:fnɔt]

морской термин

рифовый узел

framed knot         
  • pretzel knot]]
  • The seven graphs in the [[Petersen family]]. No matter how these graphs are embedded into three-dimensional space, some two cycles will have nonzero [[linking number]].
EMBEDDING OF THE CIRCLE IN THREE DIMENSIONAL EUCLIDEAN SPACE
Knot (mathematical); Mathematical knot; Theoretical knot; Framed link; Framed knot; Knots and graphs; User:Christian.Mercat/Knots; Knots and Graphs; Oriented knot; Knot (knot theory)

математика

оснащенный узел

Ορισμός

узел
'УЗЕЛ, узла, ·муж.
1. Место, где связаны концы чего-нибудь (веревок, канатов, ниток), или завитое в петлю и стянутое место на веревке, канате, нитке. Завязать узлом. Завязать узел. Узлы на веревке. Морской узел. Глухой узел.
2. перен. Место схождения, скрещения каких-нибудь линий (дорог, путей и т.п.). Железнодорожный узел. Узел дорог. Горный узел.
| центральный пункт управления сетью чего-нибудь (спец.). Районный почтово-телеграфный узел.
| Важный, центральный пункт сосредоточения чего-нибудь (воен.). Узлы сопротивления при обороне населенного пункта. Узел обороны.
3. перен. Сложное, запутанное стечение, сплетение явлений. Узел противоречий.
4. То же, что ганглий
в 1 ·знач. (анат.). Нервный узел.
5. Место стебля, от которого уходит лист (или два, несколько листьев, *****
II. 'УЗЕЛ, узла, ·муж. (мор.). Морская мера скорости, равная числу морских миль (1,87 ·км), пройденных в час. (Перевод ·англ. knot.)

Βικιπαίδεια

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n {\displaystyle n} -dimensional manifold, or n {\displaystyle n} -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n {\displaystyle n} -dimensional Euclidean space.

One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.

The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g. CT scans).

Manifolds can be equipped with additional structure. One important class of manifolds are differentiable manifolds; their differentiable structure allows calculus to be done. A Riemannian metric on a manifold allows distances and angles to be measured. Symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model spacetime in general relativity.

The study of manifolds requires working knowledge of calculus and topology.

Μετάφραση του &#39knot manifold&#39 σε Ρωσικά