maximal order complexity - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

maximal order complexity - translation to ρωσικά

CONCEPT IN RING THEORY
Maximal order; Order (number theory); Noncommutative number field

maximal order complexity      
сложность максимального порядка
asymptotic complexity         
MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities

математика

асимптотическая сложность

Ορισμός

complexity
<algorithm> The level in difficulty in solving mathematically posed problems as measured by the time, number of steps or arithmetic operations, or memory space required (called time complexity, computational complexity, and space complexity, respectively). The interesting aspect is usually how complexity scales with the size of the input (the "scalability"), where the size of the input is described by some number N. Thus an algorithm may have computational complexity O(N^2) (of the order of the square of the size of the input), in which case if the input doubles in size, the computation will take four times as many steps. The ideal is a constant time algorithm (O(1)) or failing that, O(N). See also NP-complete. (1994-10-20)

Βικιπαίδεια

Order (ring theory)

In mathematics, an order in the sense of ring theory is a subring O {\displaystyle {\mathcal {O}}} of a ring A {\displaystyle A} , such that

  1. A {\displaystyle A} is a finite-dimensional algebra over the field Q {\displaystyle \mathbb {Q} } of rational numbers
  2. O {\displaystyle {\mathcal {O}}} spans A {\displaystyle A} over Q {\displaystyle \mathbb {Q} } , and
  3. O {\displaystyle {\mathcal {O}}} is a Z {\displaystyle \mathbb {Z} } -lattice in A {\displaystyle A} .

The last two conditions can be stated in less formal terms: Additively, O {\displaystyle {\mathcal {O}}} is a free abelian group generated by a basis for A {\displaystyle A} over Q {\displaystyle \mathbb {Q} } .

More generally for R {\displaystyle R} an integral domain contained in a field K {\displaystyle K} , we define O {\displaystyle {\mathcal {O}}} to be an R {\displaystyle R} -order in a K {\displaystyle K} -algebra A {\displaystyle A} if it is a subring of A {\displaystyle A} which is a full R {\displaystyle R} -lattice.

When A {\displaystyle A} is not a commutative ring, the idea of order is still important, but the phenomena are different. For example, the Hurwitz quaternions form a maximal order in the quaternions with rational co-ordinates; they are not the quaternions with integer coordinates in the most obvious sense. Maximal orders exist in general, but need not be unique: there is in general no largest order, but a number of maximal orders. An important class of examples is that of integral group rings.

Μετάφραση του &#39maximal order complexity&#39 σε Ρωσικά