Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
математика
условие четырехугольника
математика
циклический четырёхугольник
[kwɔdri'læt(ə)r(ə)l]
общая лексика
тетрагон
тетрагональный
четырехсторонний
четырехугольный
геометрия
четырехугольник
строительное дело
чистообрезной деревянный брус
прилагательное
общая лексика
четырёхсторонний
четырехсторонний
существительное
[kwɔdri'læt(ə)r(ə)l]
общая лексика
четырехугольник
математика
четырёхсторонник
четырёхугольник
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.
Other less frequently used names for this class of quadrilaterals are inscriptable quadrilateral, inscriptible quadrilateral, inscribable quadrilateral, circumcyclic quadrilateral, and co-cyclic quadrilateral. Due to the risk of confusion with a quadrilateral that has a circumcircle, which is called a cyclic quadrilateral or inscribed quadrilateral, it is preferable not to use any of the last five names.
All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.