two-level fork junction - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

two-level fork junction - translation to ρωσικά

QUANTUM SYSTEM THAT CAN EXIST IN ANY QUANTUM SUPERPOSITION OF TWO INDEPENDENT (PHYSICALLY DISTINGUISHABLE) QUANTUM STATES; QUANTUM SYSTEMS WITH TWO POSSIBLE STATES
Two-level quantum mechanical system; Two-level system; Two state system; Two-state system; Two level system
  • An electrically neutral silver atoms beam through [[Stern–Gerlach experiment]]'s inhomogeneous magnetic field splits into two, each of which corresponds to one possible spin value of the outermost electron of the silver atom.

two-level fork junction      

строительное дело

примыкание дороги по типу трубы

two-level fork junction      
примыкание дороги по типу трубы
two-level system         

математика

двухуровневая система

Ορισμός

БОНУС
(от лат. bonus - хороший), в коммерции - вознаграждение, премия.

Βικιπαίδεια

Two-state quantum system

In quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

Two-state systems are the simplest quantum systems that are of interest, since the dynamics of a one-state system is trivial (as there are no other states the system can exist in). The mathematical framework required for the analysis of two-state systems is that of linear differential equations and linear algebra of two-dimensional spaces. As a result, the dynamics of a two-state system can be solved analytically without any approximation. The generic behavior of the system is that the wavefunction's amplitude oscillates between the two states.

A very well known example of a two-state system is the spin of a spin-1/2 particle such as an electron, whose spin can have values +ħ/2 or −ħ/2, where ħ is the reduced Planck constant.

The two-state system cannot be used as a description of absorption or decay, because such processes require coupling to a continuum. Such processes would involve exponential decay of the amplitudes, but the solutions of the two-state system are oscillatory.

Μετάφραση του &#39two-level fork junction&#39 σε Ρωσικά