характерный признак старения - translation to γαλλικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

характерный признак старения - translation to γαλλικά

ПРИЗНАК СХОДИМОСТИ ЧИСЛОВЫХ РЯДОВ
Признак сходимости Д'Аламбера; Признак сходимости Д’Аламбера; Признак сходимости д’Аламбера; Признак Даламбера; Признак Д'Аламбера; Признак Д’Аламбера

характерный признак старения      
mode de vieillissement particulier
свойство         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
с.
propriété , nature ; naturel m ; caractéristiques ; trait ( черта )
главное ее свойство - терпение - sa vertu première est la patience
свойства         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
propriétés

Ορισμός

ДИФФЕРЕНЦИАЛЬНЫЙ ПРИЗНАК
элемент или свойство языковой единицы (напр., фонемы), на котором основывается ее противопоставление другой единице того же уровня.

Βικιπαίδεια

Признак д’Аламбера

При́знак д’Аламбе́ра (или Признак Даламбера) — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.

Если для числового ряда

n = 0 a n {\displaystyle \sum _{n=0}^{\infty }a_{n}}

существует такое число q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что, начиная с некоторого номера, выполняется неравенство

| a n + 1 a n | q , {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q,}

то данный ряд абсолютно сходится; если же, начиная с некоторого номера

| a n + 1 a n | 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\geqslant 1} ,

то ряд расходится.

Если же, начиная с некоторого номера, | a n + 1 a n | < 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|<1} , при этом не существует такого q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что | a n + 1 a n | q {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q} для всех n {\displaystyle n} , начиная с некоторого номера, то в этом случае ряд может как сходиться, так и расходиться.