válvula ao vácuo elétrica - ορισμός. Τι είναι το válvula ao vácuo elétrica
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι válvula ao vácuo elétrica - ορισμός

Permissividade do vácuo; Permissividade elétrica do vácuo

Mufla elétrica         
Mufla elétrica é uma terminação nos cabos de alta tensão,Muflas terminais primárias e terminações }} FUNDEC - Fundação Dracenense de Educação e CulturaMódulo: Montagem de terminações para cabos isolados – Saídas de Subestações COPEL - Companhia Paranaense de Energia aplicada onde existe uma transição do tipo de isolamento. A rigor deve existir uma mufla em cada ponto de mudança de tipo de isolamento, mas na maioria das vezes a mufla está em uma transição de isolamento sólido (ou liquido) para ar.
Constante de permissividade do vácuo         
Constante de permissividade do vácuo, há muito tempo chamada de constante de permissividade do éter, é uma constante que permite medir a permissividade elétrica da substância que, segundo Maxwell, permeava todo o universo, chamada de éter. Segundo Maxwell, o éter era uma substância sólida elástica, na qual havia um mar de minúsculos vórtices líquidos.
Placa (válvula termiônica)         
Uma placa ou placa eletrônica, é um tipo de eletrodo que faz parte de um tubo de vácuo. Geralmente é feito de chapa metálica, conectada a um fio que passa através do invólucro de vidro do tubo até um terminal na base do tubo, onde está conectado ao circuito externo.

Βικιπαίδεια

Constante de permissividade do vácuo

Constante de permissividade do vácuo, há muito tempo chamada de constante de permissividade do éter, é uma constante que permite medir a permissividade elétrica da substância que, segundo Maxwell, permeava todo o universo, chamada de éter. Segundo Maxwell, o éter era uma substância sólida elástica, na qual havia um mar de minúsculos vórtices líquidos. Na quarta de suas famosas equações aparecia a constante dielétrica, que é inversamente proporcional à permissividade, que media a elasticidade deste sólido.

A constante de permissividade do vácuo ϵ 0 {\displaystyle \epsilon _{0}} pode ser representada pelas fórmulas:

ϵ 0 = 1 4 π K {\displaystyle \epsilon _{0}={\frac {1}{4\pi K}}}

Sendo K {\displaystyle K} a constante eletrostática no vácuo: K 0 = 8 , 9875 10 9 N m 2 C 2 {\displaystyle K_{0}=8,9875\cdot 10^{9}\mathrm {Nm^{2}C^{-2}} }

Utilizando a Lei de Coulomb:

ϵ 0 = | Q | | q | 4 π F d 2 {\displaystyle \epsilon _{0}={\frac {|Q||q|}{4\pi Fd^{2}}}}

Sendo Q {\displaystyle Q} e q {\displaystyle q} as intensidades das cargas, F {\displaystyle F} o módulo da força de interação entre elas e d {\displaystyle d} a distância que as separa.

A constante tem como valor ϵ 0 = 8 , 854187817 10 12 C 2 N 1 m 2 {\displaystyle \epsilon _{0}=8,854187817\cdot 10^{-12}\mathrm {C^{2}N^{-1}m^{-2}} } , conforme a recomendação do CODATA - 2006.

Essa constante também pode ser expressada usando a velocidade da luz no vácuo e a constante de permeabilidade do vácuo:
ε 0 = 1 μ 0 c 2 8,854 187 82 × 10 12 A 2 s 4 k g 1 m 3 {\displaystyle \varepsilon _{0}={\frac {1}{\mu _{0}\cdot c^{2}}}\approx 8{,}854\,187\,82\times 10^{-12}\;{\rm {A^{2}\cdot s^{4}\cdot kg^{-1}\cdot m^{-3}}}} .
As equações de Maxwell fazem aparecer a velocidade de propagação das ondas eletromagnéticas.
c = 1 ε 0 μ 0 {\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\cdot \mu _{0}}}}} .


Utilizando-se um capacitor de placas planas e paralelas pode-se obter essa constante experimentalmente através de medidas de forças de atração entre as duas placas, em função da tensão entre elas e em função da tensão nelas aplicada ou por meio da fórmula:

ϵ 0 = d C A {\displaystyle \epsilon _{0}=d{\frac {C}{A}}}

sendo d a distância entre as placas, C {\displaystyle C} a capacitância e A {\displaystyle A} a área das placas.

Pode-se obter a constante de permissividade através da Lei de Gauss. Esta lei define que o fluxo total que entra ou sai de uma região esférica do espaço mede diretamente a carga total que está dentro dessa mesma região.

Sabe-se que:

Φ = E A cos θ {\displaystyle \Phi =EA\cos \theta }

sendo E {\displaystyle E} o campo elétrico que passa por uma determinada área, A {\displaystyle A} a área considerada e θ {\displaystyle \theta } o ângulo de inclinação das linhas de campo em relação a A {\displaystyle A} .

E que

E = K q r 2 {\displaystyle E={\frac {Kq}{r^{2}}}} , onde E é o campo elétrico para uma carga pontual q.

Substituindo-se, temos:

Φ = K q A r 2 {\displaystyle \Phi ={\frac {KqA}{r^{2}}}}

Considerando-se a área superficial da esfera A = 4 π r 2 {\displaystyle A=4\pi r^{2}} temos:

Φ = 4 π K q {\displaystyle \Phi =4\pi Kq}

Substituindo-se (1) na equação temos que:

ϵ 0 = q Φ {\displaystyle \epsilon _{0}={\frac {q}{\Phi }}}

Que é o equivalente da lei de Gauss.

Portanto, a constante de Permissividade Elétrica do Vácuo é uma conseqüência de:

ϵ 0 μ 0 c 2 = 1 {\displaystyle \epsilon _{0}\mu _{0}c^{2}=1} , em que c é a velocidade da luz no vácuo e μ0 é a permeabilidade magnética do vácuo cujo valor é 4 π 10 7 {\displaystyle 4\pi \cdot 10^{-7}} .

Essa equação se deve ao fato de a luz ser uma onda eletromagnética.