Буняковского неравенство - ορισμός. Τι είναι το Буняковского неравенство
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Буняковского неравенство - ορισμός

СВЯЗЫВАЕТ НОРМУ И СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ В ЕВКЛИДОВОМ ИЛИ ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ, ИНАЧЕ - НЕРАВЕНСТВО ТРЕУГОЛЬНИКА ДЛЯ НОРМЫ
Неравенство Коши-Буняковского; Неравенство Буняковского; Буняковского неравенство; Неравенство Шварца; Неравенство Коши — Буняковского — Шварца

Буняковского неравенство         

одно из важнейших неравенств математического анализа, утверждающее, что

установлено В. Я. Буняковским (См. Буняковский). Это неравенство аналогично элементарному алгебраическому Коши неравенству (См. Коши неравенство):

и может быть получено из последнего посредством перехода к пределу. Нередко в математической литературе Б. н. ошибочно называется неравенством Шварца - по имени Г. А. Шварца. Однако В. Я. Буняковский опубликовал свою работу о неравенствах ещё в 1859, тогда как в работах Шварца то же неравенство появляется не ранее 1884 (без ссылок на Буняковского).

Лит.: Bounjakowsky W., Sur quelques inégalités concernant les intégrates ordinaires et les intégrates aux différences finies (Lu ie 29 avril 1859), "Mémoires de l'Académie des sciences de St.-Pétersbourg. 7 série", 1859, t. 1, № 9.

Неравенство Коши — Буняковского         
Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
Гёльдера неравенство         
Гёльдера неравенство; Неравенство Гельдера

для конечных сумм:

для интегралов:

где р > 1 и 1/p + 1/q = 1. Г. н. установлено немецким математиком О. Л. Гёльдером (О. L. Hölder) в 1889. Принадлежит к наиболее употребительным в математическом анализе. При р = q = 2 превращается для конечных сумм в Коши неравенство, а для интегралов - в Буняковского неравенство.

Βικιπαίδεια

Неравенство Коши — Буняковского

Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы. Частный случай неравенства Гёльдера и неравенства Йенсена.

Неравенство Коши — Буняковского иногда, особенно в иностранной литературе, называют неравенством Шварца и неравенством Коши — Буняковского — Шварца, хотя работы Шварца на эту тему появились только спустя 25 лет после работ Буняковского. Конечномерный случай этого неравенства называется неравенством Коши и был доказан Коши в 1821 году.